zbMATH — the first resource for mathematics

Numerical analysis and physical simulations for the time fractional radial diffusion equation. (English) Zbl 1228.65144
Summary: We do the numerical analysis and simulations for the time fractional radial diffusion equation used to describe the anomalous subdiffusive transport processes on the symmetric diffusive field. Based on rewriting the equation in a new form, we first present two kinds of implicit finite difference schemes for numerically solving the equation. Then we strictly establish the stability and convergence results. We prove that the two schemes are both unconditionally stable and second order convergent with respect to the maximum norm. Some numerical results are presented to confirm the rates of convergence and the robustness of the numerical schemes. Finally, we do the physical simulations. Some interesting physical phenomena are revealed; we verify that the long time asymptotic survival probability \(\cong t^{-\alpha }\), but independent of the dimension, where \(\alpha \) is the anomalous diffusion exponent.

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
45K05 Integro-partial differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. rep., 339, 1-77, (2000) · Zbl 0984.82032
[2] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
[3] Zaslavsky, G.M., Chaos, fractional kinetic, and anomalous transport, Phys. rep., 371, 461-580, (2002) · Zbl 0999.82053
[4] Metzler, R.; Glöckle, W.G.; Nonnenmacher, T.F., Fractional model equation for anomalous diffusion, Physica A, 211, 13-24, (1994)
[5] W.H. Deng, C. Li, Finite difference methods and their physical constraints for the fractional Klein-Kramers equation, Numer. Methods Partial Differential Equations, in press (doi:10.1002/num.20596).
[6] Deng, W.H.; Barkai, E., Ergodic properties of fractional brownian – langevin motion, Phys. rev. E, 79, (2009), 011112
[7] Benson, D.A.; Tadjeran, C.; Meerschaert, M.M.; Farnham, I.; Pohll, G., Radial fractional-order dispersion through fractured rock, Water resour. res., 40, (2004), W12416
[8] Seki, K.; Wojcik, M.; Tachiya, M., Dispersive photoluminescence decay by geminate recombination in amorphous semiconductors, Phys. rev. E, 71, (2005), 235212
[9] Borrego, R.; Abad, E.; Yuste, S.B., Survival probability of a subdiffusive particle in a \(d\)-dimensional sea of mobile traps, Phys. rev. E, 80, (2009), 061121
[10] Özdemir, N.; Agrawal, O.P.; Karadeniz, D.; Ískender, B.B., Analysis of an axis-symmetric fractional diffusion-wave problem, J. phys. A: math. theor., 42, (2009), 355208 · Zbl 1189.26009
[11] Povstenko, Y.Z., Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation, Int. J. solids struct., 44, 2324-2348, (2007) · Zbl 1121.74022
[12] Seki, K.; Wojcik, M.; Tachiya, M., Fractional reaction – diffusion equation, J. chem. phys., 119, 2165-2170, (2003)
[13] Yuste, S.B.; Borrego, R.; Abad, E., Divergent series and memory of the initial condition in the long-time solution of some anomalous diffusion problems, Phys. rev. E, 81, (2010), 021105
[14] Yuste, S.B.; Acedo, L., An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. numer. anal., 42, 1862-1874, (2005) · Zbl 1119.65379
[15] Langlands, T.A.M.; Henry, B.I., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. comput. phys., 205, 719-736, (2005) · Zbl 1072.65123
[16] Gorenflo, R.; Mainardi, F.; Moretti, D.; Paradisi, P., Time fractional diffusion: a discrete random walk approach, Nonlinear dynam., 29, 129-143, (2002) · Zbl 1009.82016
[17] Lin, Y.; Xu, C., Finite difference/spectral approximations for time-fractional diffusion equation, J. comput. phys., 225, 1533-1552, (2007) · Zbl 1126.65121
[18] Deng, W.H., Numerical algorithm for the time fractional fokker – planck equation, J. comput. phys., 227, 1510-1522, (2007) · Zbl 1388.35095
[19] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. numer. anal., 46, 1079-1095, (2008) · Zbl 1173.26006
[20] Özdemir, N.; Karadeniz, D., Fractional diffusion-wave problem in cylindrical coordinates, Phys. lett. A, 372, 5968-5972, (2008) · Zbl 1223.26012
[21] Özdemir, N.; Karadeniz, D.; Ískender, B.B., Fractional optimal control problem of a distributed system in cylindrical coordinates, Phys. lett. A, 373, 221-226, (2009) · Zbl 1227.49007
[22] Oldham, K.B.; Spanier, J., The fractional calculus, (1974), Academic Press New York · Zbl 0428.26004
[23] Diethelm, K., An algorithm for the numerical solution of differential equations of fractional order, Electron. trans. numer. anal., 5, 1-6, (1997) · Zbl 0890.65071
[24] Thomas, J.W., Numerical partical differential equations: finite difference methods, (1995), Springer New York · Zbl 0831.65087
[25] Chen, S.; Liu, F.; Zhuang, P.; Anh, V., Finite difference approximations for the fractional fokker – planck equation, Appl. math. model., 33, 256-273, (2009) · Zbl 1167.65419
[26] Hu, J.W.; Tang, H.M., Numerical methods for differential equations, (1999), Scientific Press China
[27] Yuste, S.B.; Lindenberg, K., Subdiffusive target problem: survival probability, Phys. rev. E, 76, (2007), 051114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.