×

zbMATH — the first resource for mathematics

Une condition suffisante de reconnaissabilité dans un monoïde partiellement commutatif. (A sufficient condition for recognizability in a partially commutative monoid). (French) Zbl 0599.20107
The main result presented is related to the rationality of some languages obtained by closure according to a partial commutation relation. The author claims to extend results from R. Cori, D. Perrin [”Sur la reconnaissabilité dans les monoides partiellement commutatifs libres” (to appear in RAIRO, Inf. Théor.)] and from R. Cori, Y. Métivier [Theor. Comput. Sci. 35, 179-189 (1985; Zbl 0559.20040)].
Reviewer: A.Soil

MSC:
20M35 Semigroups in automata theory, linguistics, etc.
68Q45 Formal languages and automata
68Q70 Algebraic theory of languages and automata
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] 1. R. CORI et D. PERRIN, Sur la reconnaissabilité dans les monoïdes partiellement commutatifs libres, R.A.I.R.O., Informat, théor. (à paraître).
[2] 2. R. CORIet Y. MÉTIVIER, Rational Subsets of Some Partially Abelian Monoids, Theoret. Comput. Sc. (à paraître).
[3] 3. M. P. FLÉ et G. ROUCAIROL, Maximal Serializability of Iterated Transaction, Theoret. Comput. Sc. (à paraître) (voir aussi ACM SIGACT SIGOPS, 1982, p. 194-200). Zbl0572.68082 MR805130 · Zbl 0572.68082
[4] 4. M. LOTHAIRE, Combinatorics on Words, Addison Wesley, 1983. Zbl0514.20045 MR675953 · Zbl 0514.20045
[5] 5. J.-E. PIN, Variétés de langages formels, Masson, Paris, 1984. Zbl0636.68093 MR752695 · Zbl 0636.68093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.