zbMATH — the first resource for mathematics

Kostenoptimale Prüfpläne für ein quantitatives Merkmal. (German) Zbl 0599.62124
Author’s summary: A sample inspection plan is said to be optimal in the sense of the minimax regret principle, if it minimizes the difference between the expected total costs and the unavoidable costs. The results of this article can be used to calculate such sample inspection plans for a quantitative quality control with one-sided tolerance limits and known or unknown variance of the test variate.
As an example of practical importance the case of a normal variate with unknown variance is considered. Formulae are given to estimate the error that arises if the assumed distribution of the test variate differs from the actual distribution.
Reviewer: W.Uhlmann

62P30 Applications of statistics in engineering and industry; control charts
Full Text: DOI EuDML
[1] Amos DE (1964) Representations of the central and noncentralt distributions. Biometrika 5:451–458 · Zbl 0129.33405
[2] Barlow RE, Hunter LC, Proschan F (1963) Optimum checking procedures. J Soc Indust Appl Math 11/4 · Zbl 0116.36101
[3] Basler H (1967/68) Bestimmung von kostenoptimalen Prüfplänen mittels des Mini-Max-Prinzips. Metrika 12:115–154 · Zbl 0177.22903
[4] Karlin S (1968) Total positivity. Stanford (California)
[5] Mäder U (1982) Kostenoptimale Prüfpläne für ein quantitatives Merkmal. Dissertation Würzburg · Zbl 0599.62124
[6] Owen DB (1968) A survey of properties and applications of the noncentralt distribution. Technometrics 11/3:445–478 · Zbl 0162.22403
[7] Schaefer M (1975) Das asymptotische Verhalten dest-Testes unter allgemeinen Alternativen. Math Operationsforsch u Statist 6/5:775–785 · Zbl 0319.62015
[8] Stange K (1964) Die Berechnung wirtschaftlicher Pläne für die messende Prüfung. Metrika 8:48–82
[9] Störmer H (1979) Über das Testen von Ausschußanteilen mit verallgemeinertent-Tests. Metrika 26:5–24 · Zbl 0403.62069
[10] Uhlmann W (1982) Statistische Qualitätskontrolle. Stuttgart · Zbl 0487.62086
[11] Van Eeden C (1961) Some approximations to the percentage points of the non-centralt-distribution. Rev Inst Internat Statist 29:4–31 · Zbl 0098.11501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.