Burton, J. A.; Zinober, A. S. I. Continuous approximation of variable structure control. (English) Zbl 0599.93029 Int. J. Syst. Sci. 17, 875-885 (1986). Variable structure control systems with linear plant and switching hyperplanes are considered. In order to avoid chattering, the authors propose a continuous control law which approximates perfect sliding motion obtained by the discontinuous one. This extends to the multivariable case some results of G. Ambrosino, G. Celentano and F. Garofalo [Int. J. Control 39, 1339-1349 (1984; Zbl 0534.93035)]. An example is presented. Reviewer: T.Zolezzi Cited in 50 Documents MSC: 93C15 Control/observation systems governed by ordinary differential equations 49J30 Existence of optimal solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.) 93C05 Linear systems in control theory 93C35 Multivariable systems, multidimensional control systems Keywords:Variable structure control systems; continuous control law; sliding motion Citations:Zbl 0534.93035 PDF BibTeX XML Cite \textit{J. A. Burton} and \textit{A. S. I. Zinober}, Int. J. Syst. Sci. 17, 875--885 (1986; Zbl 0599.93029) Full Text: DOI OpenURL References: [1] DOI: 10.1080/00207178408933250 · Zbl 0534.93035 [2] DOI: 10.1109/TPAS.1982.317117 [3] DORLING C. M., Inst. M.C. Workshop on Computer Aided Control System Design pp 67– (1984) [4] DOI: 10.1016/0005-1098(69)90071-5 · Zbl 0182.48302 [5] EMEL’YANOV S. V., Automatic Control Systems of Variable Structure (1967) [6] DOI: 10.1016/0005-1098(84)90076-1 · Zbl 0527.93025 [7] ITKIS U., Control Systems of Variable Structure (1976) · Zbl 0256.93033 [8] PONTRYAGIN L. S., The Mathematical Theory of Optimal Processes (1962) · Zbl 0112.05502 [9] DOI: 10.1080/00207178308933134 · Zbl 0522.93032 [10] DOI: 10.1093/imamci/1.3.223 · Zbl 0662.93059 [11] DOI: 10.1016/0005-1098(84)90044-X · Zbl 0532.93002 [12] UTKIN , V. I. , 1971 ,Automn remote Control, 21 , 1897 ; 1974,Sliding Modes and Their Applications in Variable Structure Systems(Moscow Mir) . [13] WILKINSON J. H., The Algebraic Eigenvalue Problem (1965) · Zbl 0258.65037 [14] DOI: 10.1109/TAC.1978.1101913 · Zbl 0403.93033 [15] DOI: 10.1109/TAC.1977.1101661 · Zbl 0382.49029 [16] ZINOBER A. S. I., Self Tuning and Adaptive Control (1981) · Zbl 0508.93036 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.