×

zbMATH — the first resource for mathematics

Proper stable Bezout factorizations and feedback control of linear time- delay systems. (English) Zbl 0599.93047
Author’s abstract: ”This paper deals with the existence and construction of proper stable Bezout factorizations of transfer function matrices of linear time-invariant systems with commensurate time delays. Existence of factorizations is characterized in terms of spectral controllability (or spectral observability) of the co-canonical (or canonical) realization of the transfer function matrix. An explicit procedure for computing proper stable Bezout factorizations is given in terms of a specialized ring of pure and distributed time delays. This procedure is utilized to construct finite-dimensional stabilizing compensators and to construct feedback systems which assign the characteristic polynomial of the closed-loop system.”
Reviewer: K.Cooke

MSC:
93D15 Stabilization of systems by feedback
34K35 Control problems for functional-differential equations
93C05 Linear systems in control theory
93B55 Pole and zero placement problems
93D25 Input-output approaches in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BF01752406 · Zbl 0436.93010 · doi:10.1007/BF01752406
[2] DOI: 10.1109/TAC.1984.1103452 · doi:10.1109/TAC.1984.1103452
[3] HALE J. K., Theory of Functional Differential Equations (1977) · Zbl 0352.34001
[4] DOI: 10.1007/BF01698126 · Zbl 0318.93003 · doi:10.1007/BF01698126
[5] DOI: 10.1109/TAC.1985.1103789 · Zbl 0557.93052 · doi:10.1109/TAC.1985.1103789
[6] DOI: 10.1109/TAC.1982.1102958 · Zbl 0511.93020 · doi:10.1109/TAC.1982.1102958
[7] DOI: 10.1109/TAC.1979.1102124 · Zbl 0425.93029 · doi:10.1109/TAC.1979.1102124
[8] DOI: 10.1016/0005-1098(76)90013-3 · Zbl 0345.93023 · doi:10.1016/0005-1098(76)90013-3
[9] NETT , C. N. , JACOBSON , C. A. , and BALAS , M. J. , 1983 , Proc. 22nd I.E.E.E. Conf. Decision and Control , San Antonio , 268 .
[10] NEWMAN M., Integral Matrices (1973)
[11] DOI: 10.1137/0321036 · Zbl 0517.93012 · doi:10.1137/0321036
[12] DOI: 10.1016/0022-0000(79)90052-7 · Zbl 0407.93011 · doi:10.1016/0022-0000(79)90052-7
[13] DOI: 10.1137/0321050 · Zbl 0524.93054 · doi:10.1137/0321050
[14] VIDYASAGAR , M. 1972 ,SIAM J. Control, 10 , 203 ; 1975 , Ibid. 13, 1144; 1985, Control System Synthesis A Factorization Approach (Cambridge, Massachusetts MIT Press) .
[15] DOI: 10.1109/TAC.1982.1103015 · Zbl 0486.93051 · doi:10.1109/TAC.1982.1103015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.