×

zbMATH — the first resource for mathematics

Challenging the paradigm of singularity excision in gravitational collapse. (English) Zbl 1228.83057
Summary: A paradigm deeply rooted in modern numerical relativity calculations prescribes the removal of those regions of the computational domain where a physical singularity may develop. We here challenge this paradigm by performing three-dimensional simulations of the collapse of uniformly rotating stars to black holes without excision. We show that this choice, combined with suitable gauge conditions and the use of minute numerical dissipation, improves dramatically the long-term stability of the evolutions. In turn, this allows for the calculation of the waveforms well beyond what was previously possible, providing information on the black-hole ringing and setting a new mark on the present knowledge of the gravitational-wave emission from the stellar collapse to a rotating black hole.

MSC:
83C57 Black holes
83C75 Space-time singularities, cosmic censorship, etc.
83-08 Computational methods for problems pertaining to relativity and gravitational theory
Software:
AHFinderDirect
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRevLett.80.2512 · doi:10.1103/PhysRevLett.80.2512
[2] T. Nakamura, Prog. Theor. Phys. Suppl. 90 pp 1– (1987) ISSN: http://id.crossref.org/issn/0375-9687
[3] DOI: 10.1103/PhysRevLett.95.121101 · doi:10.1103/PhysRevLett.95.121101
[4] DOI: 10.1103/PhysRevLett.96.111102 · doi:10.1103/PhysRevLett.96.111102
[5] DOI: 10.1103/PhysRevLett.96.111101 · doi:10.1103/PhysRevLett.96.111101
[6] DOI: 10.1086/377435 · doi:10.1086/377435
[7] DOI: 10.1103/PhysRevD.67.024004 · doi:10.1103/PhysRevD.67.024004
[8] DOI: 10.1088/0264-9381/21/6/014 · Zbl 1047.83002 · doi:10.1088/0264-9381/21/6/014
[9] DOI: 10.1103/PhysRevLett.94.131101 · doi:10.1103/PhysRevLett.94.131101
[10] DOI: 10.1103/PhysRevLett.69.1845 · doi:10.1103/PhysRevLett.69.1845
[11] DOI: 10.1103/PhysRevD.71.024035 · doi:10.1103/PhysRevD.71.024035
[12] DOI: 10.1103/PhysRevD.62.044034 · doi:10.1103/PhysRevD.62.044034
[13] L. Baiotti, Mem. Soc. Astron. It. Suppl. 1 pp 210– (2003) ISSN: http://id.crossref.org/issn/1824-0178
[14] DOI: 10.1088/0264-9381/21/2/026 · Zbl 1045.83006 · doi:10.1088/0264-9381/21/2/026
[15] DOI: 10.1103/PhysRevLett.75.600 · doi:10.1103/PhysRevLett.75.600
[16] H.-O. Kreiss, GARP Publ. Ser. 10 (1973) ISSN: http://id.crossref.org/issn/0084-1978
[17] DOI: 10.1103/PhysRevLett.55.891 · doi:10.1103/PhysRevLett.55.891
[18] DOI: 10.1103/PhysRevD.73.064030 · doi:10.1103/PhysRevD.73.064030
[19] DOI: 10.1103/PhysRevD.68.102004 · doi:10.1103/PhysRevD.68.102004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.