×

zbMATH — the first resource for mathematics

Towards multi-phase flow simulations in the PDE framework Peano. (English) Zbl 1398.76168
Summary: In this work, we present recent enhancements and new functionalities of our flow solver in the partial differential equation framework Peano. We start with an introduction including an overview of the Peano development and a short description of the basic concepts of Peano and the flow solver in Peano concerning the underlying structured but adaptive Cartesian grids, the data structure and data access optimisation, and spatial and time discretisation of the flow solver. The new features cover geometry interfaces and additional application functionalities. The two geometry interfaces, a triangulation-based description supported by the tool preCICE and a built-in geometry using geometry primitives such as cubes, spheres, or tetrahedra allow for the efficient treatment of complex and changing geometries, an essential ingredient for most application scenarios. The new application functionality concerns a coupled heat-flow problem and two-phase flows. We present numerical examples, performance and validation results for these new functionalities.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76M20 Finite difference methods applied to problems in fluid mechanics
76T30 Three or more component flows
76D05 Navier-Stokes equations for incompressible viscous fluids
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
Software:
Peano; PETSc; preCICE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230(11): 4137–4152 · Zbl 1343.76040
[2] Aoki T (1997) Interpolated differential operator (IDO) scheme for solving partial differential equations. Comput Phys Commun 102: 132–146
[3] Atanasov A, Bungartz H-J, Frisch J, Mehl M, Mundani R-P, Rank E, van Treek C (2010) Computational steering of complex flow simulations. In: Siegfried W, Arndt B, Gerhard W (eds) High performance computing in science and engineering, Garching 2009. Springer, Berlin (to appear) · Zbl 1427.76182
[4] Aulisa E, Manservisi S, Scardovelli R (2006) A novel representation of the surface tension force for two-phase flow with reduced spurious currents. Comput Methods Appl Mech Eng 195(44–47): 6239–6257 · Zbl 1178.76225
[5] Badalassi VE, Ceniceros HD, Banerjee S (2003) Computation of multiphase systems with phase field models. J Comput Phys 190(2): 371–397 · Zbl 1076.76517
[6] Balay S, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, Curfman McInnes L, Smith BF, Zhang H (2004) PETSc users manual. Technical Report ANL-95/11-Revision 2.1.5, Argonne National Laboratory
[7] Blanke C (2004) Kontinuitätserhaltende Finite-Element-Diskretisierung der Navier–Stokes–Gleichungen. Diploma Thesis, Technische Universität München
[8] Blum EK (1962) A modification of the Runge–Kutta fourth-order method. Math Comput · Zbl 0104.10302
[9] Brachet ME, Mininni PD, Rosenberg DL, Pouquet A (2008) High-order low-storage explicit Runge-Kutta schemes for equations with quadratic nonlinearities. Technical Report, CERN, August 2008 (arXiv:0808.1883)
[10] Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface-tension. J Comput Phys 100(2): 335–354 · Zbl 0775.76110
[11] Brázdová V, Bowler DR (2008) Automatic data distribution and load balancing with space-filling curves: implementation in conquest. J Phys Condens Matter 20
[12] Brenk M, Bungartz H-J, Daubner K, Mehl M, Muntean IL, Neckel T (2008) An Eulerian approach for partitioned fluid-structure simulations on Cartesian grids. Comput Mech 43(1): 115–124 · Zbl 1228.74024
[13] Brenk M, Bungartz H-J, Mehl M, Muntean IL, Neckel T, Weinzierl T (2008) Numerical simulation of particle transport in a drift ratchet. SIAM J Sci Comput 30(6): 2777–2798 · Zbl 1185.35159
[14] Bungartz H-J, Gatzhammer B, Mehl M, Neckel T (2010) Partitioned simulation of fluid–structure interaction on cartesian grids. In: Bungartz H-J, Mehl M, Schäfer M (eds) Fluid–structure interaction–modelling, simulation, optimisation, part II. LNCSE. Springer, Berlin, pp 255–284 · Zbl 1213.74110
[15] Bungartz H-J, Mehl M, Neckel T, Weinzierl T (2010) The PDE framework Peano applied to fluid dynamics: an efficient implementation of a parallel multiscale fluid dynamics solver on octree-like adaptive Cartesian grids. Comput Mech 46(1):103–114 (published online) · Zbl 1301.76056
[16] Caboussat A (2005) Numerical simulation of two-phase free surface flows. Arch Comput Methods Eng 12(2): 165–224 · Zbl 1097.76047
[17] Ceniceros HD, Roma AM, Silveira-Neto A, Villar MM (2010) A robust, fully adaptive hybrid level-set/front-tracking method for two-phase flows with an accurate surface tension computation. Commun Comput Phys 8(1): 51–94 · Zbl 1364.76154
[18] Dullien FAL (1992) Porous media: fluid transport and pore structure, 2nd edn. Academic Press, London
[19] Eckhardt W, Weinzierl T (2010) A blocking strategy on multicore architectures for dynamically adaptive PDE solvers. In: Wyrzykowski R, Dongarra J, Karczewski K, Wasniewski J (eds) Parallel processing and applied mathematics, PPAM 2009. Lecture notes in computer science, vol 6068. Springer, Berlin, pp 567–575
[20] Farthing MW, Kees CE, Akkerman I, Bazilevs Y (2011) A conservative level set method suitable for variable-order approximations and unstructured meshes. J Comput Phys 230(12): 4536–4558 · Zbl 1416.76214
[21] Gresho PM, Sani RL (1998) Incompressible flow and the finite element method. Wiley, London
[22] Griebel M, Dornseifer Th, Neunhoeffer T (1998) Numerical simulation in fluid dynamics, a practical introduction. SIAM · Zbl 0945.76001
[23] Griebel M, Zumbusch G (1999) Parallel multigrid in an adaptive PDE solver based on hashing and space-filling curves. Parallel Comput 25(7): 827–843 · Zbl 0945.65138
[24] Günther F, Krahnke A, Langlotz M, Mehl M, Pögl M, Zenger Ch (2004) On the parallelization of a cache-optimal iterative solver for PDEs based on hierarchical data structures and space-filling curves. In: Proceedings of the recent advances in parallel virtual machine and message passing interface: 11th European PVM/MPI Users Group Meeting Budapest, Hungary, September 19–22, 2004. Lecture notes in computer science, vol 3241. Springer, Heidelberg
[25] Günther F, Mehl M, Pögl M, Zenger C (2006) A cache-aware algorithm for PDEs on hierarchical data structures based on space-filling curves. SIAM J Sci Comput 28(5): 1634–1650 · Zbl 1162.68406
[26] Hungershöfer J, Wierum JM (2002) On the quality of partitions based on space-filling curves. In: ICCS’02: proceedings of the international conference on computational science–part III. Springer, pp 36–45 · Zbl 1049.68716
[27] Imai Y, Aoki T, Takizawa K (2008) Conservative form of interpolated differential operator scheme for compressible and incompressible fluid dynamics. J Comput Phys 227: 2263–2285 · Zbl 1261.76031
[28] Jacqmin D (1999) Calculation of two-phase Navier–Stokes flows using phase-field modeling. J Comput Phys 155(1): 96–127 · Zbl 0966.76060
[29] Langlotz M, Mehl M, Weinzierl T, Zenger C (2005) Skvg: cache-optimal parallel solution of PDEs on high performance computers using space-trees and space-filling curves. In: Bode A, Durst F (eds) High performance computing in science and engineering, Garching 2004. Springer, Berlin, pp 71–82
[30] Lieb M (2008) A full multigrid implementation on staggered adaptive Cartesian grids for the pressure poisson equation in computational fluid dynamics. Master’s thesis, Institut für Informatik, Technische Universität München
[31] Lubachevsky BD, Stillinger F (1990) Geometric properties of random disk packings. J Stat Phys 60(5,6): 561–583 · Zbl 1086.82569
[32] Mehl M, Neckel T, Neumann P (2011) Navier–stokes and lattice–boltzmann on octree-like grids in the Peano framework. Int J Numer Methods Fluids 65(1):67–86. doi: 10.1002/fld.2469 (published online) · Zbl 1427.76188
[33] Mehl M, Weinzierl T, Zenger C (2006) A cache-oblivious self-adaptive full multigrid method. Numer Linear Algebra Appl 13(2–3): 275–291 · Zbl 1174.65550
[34] Meidner D, Vexler B (2007) Adaptive space–time finite element methods for parabolic optimization problems. SIAM J Control Optim 46(1): 116–142 · Zbl 1149.65051
[35] Muntean IL, Mehl M, Neckel T, Weinzierl T (2008) Concepts for efficient flow solvers based on adaptive cartesian grids. In: Wagner S, Steinmetz M, Bode A, Brehm M (eds) High performance computing in science and engineering, Garching 2007. Springer, Berlin · Zbl 1223.76060
[36] Neckel T (2009) The PDE framework Peano: an environment for efficient flow simulations. Verlag Dr. Hut, Munich
[37] Neckel T, Mehl M, Bungartz H-J, Aoki T (2008) CFD simulations using an AMR-like approach in the PDE framework Peano. In: CFD2008. CFD22, December 2008
[38] Neckel T, Mehl M, Zenger C (2010) Enhanced divergence-free elements for efficient incompressible flow simulations in the PDE framework Peano. In: Proceedings of the fifth European conference on computational fluid dynamics, ECCOMAS CFD 2010, 14–17 June 2010, Lissabon
[39] Osher S, Fedkiw RP (2001) Level set methods: an overview and some recent results. J Comput Phys 169(2): 463–502 · Zbl 0988.65093
[40] Roma AM, Peskin CS, Berger MJ (1999) An adaptive version of the immersed boundary method. J Comput Phys 153(2): 509–534 · Zbl 0953.76069
[41] Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech 31: 567–603
[42] Scheidegger AE (1974) The physics of flow through porous media. University of Toronto Press, Toronto
[43] Sethian JA, Smereka P (2003) Level set methods for fluid interfaces. Annu Rev Fluid Mech 35(1): 341–372 · Zbl 1041.76057
[44] Shin S, Abdel-Khalik SI, Daru V, Juric D (2005) Accurate representation of surface tension using the level contour reconstruction method. J Comput Phys 203(2): 493–516 · Zbl 1143.76561
[45] Shin S, Juric D (2002) Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity. J Comput Phys 180(2): 427–470 · Zbl 1143.76595
[46] Steensland J, Handra SC, Parashar M (2002) An application-centric characterization of domain-based SFC partitioners for parallel SAMR. IEEE Trans Parallel Distrib Syst 13(12): 1275–1289 · Zbl 05107957
[47] Sussman M, Fatemi E, Smereka P, Osher S (1997) An improved level set method for incompressible two-phase flows. Comput Fluids 27: 663–680 · Zbl 0967.76078
[48] Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible 2-phase flow. J Comput Phys 114(1): 146–159 · Zbl 0808.76077
[49] Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64: 1201–1218 · Zbl 1427.76148
[50] Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Taubner W, Han J, Nas S, Jan YJ (2001) A front-tracking method for the computations of multiphase flow. J Comput Phys 169(2): 708–759 · Zbl 1047.76574
[51] Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100(1): 25–37 · Zbl 0758.76047
[52] Wand CM, Tay ZY (2010) Hydroelastic analysis and response of pontoon-type very large floating structures. In: Bungartz H-J, Mehl M, Schäfer M (eds) Fluid–structure interaction–modelling, simulation, optimisation, part II. LNCSE. Springer, Berlin, pp 103–130
[53] Weinzierl T (2005) Eine cache-optimale Implementierung eines Navier–Stokes Lösers unter besonderer Berücksichtigung physikalischer Erhaltungssätze. Diploma Thesis, Institut für Informatik, Technische Universität München
[54] Weinzierl T (2009) A framework for parallel PDE solvers on multiscale adaptive Cartesian grids. Verlag Dr. Hut, Munich
[55] Weinzierl T, Mehl M (2011) Peano–a traversal and storage scheme for octree-like adaptive cartesian multiscale grids. SIAM J Sci Comput (accepted) · Zbl 1245.65169
[56] Zumbusch GW (2003) Parallel multilevel methods advances in numerical mathematics. Teubner Verlag, Stuttgart
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.