×

zbMATH — the first resource for mathematics

Control and synchronization of fractional-order financial system based on linear control. (English) Zbl 1234.34033
Summary: Control and synchronization of financial systems with fractional-order are discussed. Based on the stability theory for fractional-order differential equations, the Routh-Hurwitz stability condition, and by using linear control, simpler controllers are designed to achieve control and synchronization of fractional-order financial systems. The proposed controllers are linear and easy to implement and improve upon existing results. Theoretical analysis and numerical simulations are presented to demonstrate the validity and feasibility of the proposed method.
Reviewer: Reviewer (Berlin)

MSC:
34C60 Qualitative investigation and simulation of ordinary differential equation models
34A08 Fractional ordinary differential equations and fractional differential inclusions
34H05 Control problems involving ordinary differential equations
34H10 Chaos control for problems involving ordinary differential equations
34H15 Stabilization of solutions to ordinary differential equations
Software:
FODE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. H. Strotz, J. C. Mcanulty, and J. B. Naines, “Goodwin’s nonlinear theory of the business cycle: an electro-analog solution,” Econometric, vol. 21, no. 3, pp. 390-411, 1953. · Zbl 0050.36804 · doi:10.2307/1905446
[2] A. C. Chian, “Nonlinear dynamics and chaos in macroeconomics,” International Journal of Theoretical and Applied Finance, vol. 3, no. 3, p. 601, 2000. · doi:10.1142/S0219024900000723
[3] L. Fanti and P. Manfredi, “Chaotic business cycles and fiscal policy: an IS-LM model with distributed tax collection lags,” Chaos, Solitons & Fractals, vol. 32, no. 2, pp. 736-744, 2007. · Zbl 1133.91482 · doi:10.1016/j.chaos.2005.11.024
[4] G. Feichtinger, Economic Evolution and Demographic Change, Springer, Berlin, Germany, 1992.
[5] T. Puu, “Chaos in duopoly pricing,” Chaos, Solitons & Fractals, vol. 1, no. 6, pp. 573-581, 1991. · Zbl 0754.90015
[6] M. Kopel, “Improving the performance of an economic system: controlling chaos,” Journal of Evolutionary Economics, vol. 7, no. 3, pp. 269-289, 1997. · doi:10.1007/s001910050044
[7] K. Pyragas, “Continuous control of chaos by self-controlling feedback,” Physics Letters A, vol. 170, no. 6, pp. 421-428, 1992. · doi:10.1016/0375-9601(92)90745-8
[8] J. A. Holyst, T. Hagel, G. Haag, and W. Weidlich, “How to control a chaotic economy?” Journal of Evolutionary Economics, vol. 6, no. 1, pp. 31-42, 1996. · doi:10.1007/BF01202371
[9] J. A. Holyst and K. Urbanowicz, “Chaos control in economical model by time-delayed feedback method,” Physica A, vol. 287, no. 3-4, pp. 587-598, 2000. · doi:10.1016/S0378-4371(00)00395-2
[10] L. Chen and G. Chen, “Controlling chaos in an economic model,” Physica A, vol. 374, no. 1, pp. 349-358, 2007. · doi:10.1016/j.physa.2006.07.022
[11] E. Ahmed, A. El-Misiery, and H. N. Agiza, “On controlling chaos in an inflation-unemployment dynamical system,” Chaos, Solitons & Fractals, vol. 10, no. 9, pp. 1567-1570, 1999. · Zbl 0958.91042 · doi:10.1016/S0960-0779(98)00192-1
[12] H. N. Agiza, “On the analysis of stability, bifurcation, chaos and chaos control of Kopel map,” Chaos, Solitons & Fractals, vol. 10, no. 11, pp. 1909-1916, 1999. · Zbl 0955.37022 · doi:10.1016/S0960-0779(98)00210-0
[13] J. T. Sun, F. Qiao, and Q. Wu, “Impulsive control of a financial model,” Physics Letters A, vol. 335, no. 4, pp. 282-288, 2005. · Zbl 1123.91325 · doi:10.1016/j.physleta.2004.12.030
[14] J. G. Du, T. W. Huang, Z. H. Sheng, and H. B. Zhang, “A new method to control chaos in an economic system,” Applied Mathematics and Computation, vol. 217, no. 6, pp. 2370-2380, 2010. · Zbl 1200.91195 · doi:10.1016/j.amc.2010.07.036
[15] R. C. Koeller, “Polynomial operators, stieltjes convolution, and fractional calculus in hereditary mechanics,” Acta Mechanica, vol. 58, no. 3-4, pp. 251-264, 1986. · Zbl 0578.73040 · doi:10.1007/BF01176603
[16] R. C. Koeller, “Applications of fractional calculus to the theory of viscoelasticity,” Journal of Applied Mechanics, vol. 51, no. 2, pp. 294-298, 1984. · Zbl 0544.73052 · doi:10.1115/1.3167616
[17] O. Heaviside, Electromagnetic Theory, Chelsea, New York, NY, USA, 1971. · JFM 30.0801.03
[18] Á. Cartea and D. del-Castillo-Negrete, “Fractional diffusion models of option prices in markets with jumps,” Physica A, vol. 374, no. 2, pp. 749-763, 2007. · doi:10.1016/j.physa.2006.08.071
[19] N. Laskin, “Fractional market dynamics,” Physica A, vol. 287, no. 3-4, pp. 482-492, 2000. · doi:10.1016/S0378-4371(00)00387-3
[20] E. Scalas, R. Gorenflo, and F. Mainardi, “Fractional calculus and continuous-time finance,” Physica A, vol. 284, no. 1-4, pp. 376-384, 2000. · doi:10.1016/S0378-4371(00)00255-7
[21] W. C. Chen, “Nonlinear dynamics and chaos in a fractional-order financial system,” Chaos, Solitons & Fractals, vol. 36, no. 5, pp. 1305-1314, 2008. · doi:10.1016/j.chaos.2006.07.051
[22] S. Dadras and H. R. Momeni, “Control of a fractional-order economical system via sliding mode,” Physica A, vol. 389, no. 12, pp. 2434-2442, 2010. · doi:10.1016/j.physa.2010.02.025
[23] M. S. Abd-Elouahab, N. EddineHamri, and J. W. Wang, “Chaos control of a fractional-order financial system,” Mathematical Problems in Engineering, vol. 2010, Article ID 270646, 18 pages, 2010. · Zbl 1195.91185 · doi:10.1155/2010/270646 · eudml:227606
[24] Y. Chen, X. Wu, and Z. Gui, “Global synchronization criteria for a class of third-order non-autonomous chaotic systems via linear state error feedback control,” Applied Mathematical Modelling, vol. 34, no. 12, pp. 4161-4170, 2010. · Zbl 1201.93045 · doi:10.1016/j.apm.2010.04.013
[25] J. X. Zhang and W. S. Tang, “Control and synchronization for a class of new chaotic systems via linear feedback,” Nonlinear Dynamics, vol. 58, no. 4, pp. 675-686, 2009. · Zbl 1183.70075 · doi:10.1007/s11071-009-9509-9
[26] M. Sun, Q. Jia, and L. Tian, “A new four-dimensional energy resources system and its linear feedback control,” Chaos, Solitons & Fractals, vol. 39, no. 1, pp. 101-108, 2009. · Zbl 1197.93122 · doi:10.1016/j.chaos.2007.01.125
[27] B. G. Xin, T. Chen, and Y. Q. Liu, “Synchronization of chaotic fractional-order windmt systems via linear state error feedback control,” Mathematical Problems in Engineering, Article ID 859685, 10 pages, 2010. · Zbl 1205.93054 · doi:10.1155/2010/859685 · eudml:223923
[28] Z. M. Odibat, N. Corson, M. A. Aziz-Alaoui, and C. Bertelle, “Synchronization of chaotic fractional-order systems via linear control,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 20, no. 1, pp. 81-97, 2010. · Zbl 1183.34095 · doi:10.1142/S0218127410025429
[29] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. · Zbl 0998.26002
[30] D. Matignon, “Stability results of fractional differential equations with applications to control processing,” in Proceedings of the Institute for Mathematics and Computer Science, IEEE International Conference on Systems, pp. 963-968, Lille, France, 1996.
[31] W. Deng, “Numerical algorithm for the time fractional Fokker-Planck equation,” Journal of Computational Physics, vol. 227, no. 2, pp. 1510-1522, 2007. · Zbl 1388.35095 · doi:10.1016/j.jcp.2007.09.015
[32] K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 265, no. 2, pp. 229-248, 2002. · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.