zbMATH — the first resource for mathematics

A generic approach for the solution of nonlinear residual equations. III: Sensitivity computations. (English) Zbl 1230.74227
Summary: Sensitivity analysis provides qualitative and quantitative information on the behaviour of the model under study, and offers an access to gradients that may be used for identification purposes. Such precious information may be obtained at a low development cost applying a generic automatic differentiation (AD) tool to the computer code implementing this model. Nonlinear residual problems solved through a path following method may be addressed too. In this paper, AD techniques are adapted to the Taylor-based asymptotic numerical method. A sensitivity study of a laminated glass beam to the perturbation of some material and geometric parameters, and the perturbation of elementary stiffness matrices illustrates the method. For part I see Y. Koutsawa et al., ibid. 198, No. 3–4, 572–577 (2008; Zbl 1228.74029); for part II see M. Bilasse at al., ibid. 198, 3999–4004 (2009).

74S30 Other numerical methods in solid mechanics (MSC2010)
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics
74E30 Composite and mixture properties
Full Text: DOI
[1] van Keulen, F.; Haftka, R.; Kim, N., Review of options for structural design sensitivity analysis. part I: linear systems, Computer methods in applied mechanics and engineering, 194, 3213-3243, (2005), (Structural and Design Optimization) · Zbl 1091.74040
[2] Langelaar, M.; van Keulen, F., Sensitivity analysis of shape memory alloy shells, Computers & structures, 86, 964-976, (2008)
[3] Griewank, A.; Walther, A., Evaluating derivatives: principles and techniques of algorithmic differentiation, (2008), SIAM Philadelphia, PA · Zbl 1159.65026
[4] Charpentier, I.; Potier-Ferry, M., Différentiation automatique de la méthode asymptotique numérique typée: L’approche diamant, Comptes rendus mecanique, 336, 336-340, (2008) · Zbl 1173.65322
[5] Thompson, J.; Walker, A., The nonlinear perturbation analysis of discrete structural systems, International journal of solids and structures, 4, 757-768, (1968) · Zbl 0159.55701
[6] Azrar, L.; Cochelin, B.; Damil, N.; Potier-Ferry, M., An asymptotic-numerical method to compute the postbuckling behavior of elastic plates and shells, International journal for numerical methods in engineering, 36, 1251-1277, (1993) · Zbl 0772.73039
[7] Cochelin, B.; Damil, N.; Potier-Ferry, M., Méthode asymptotique numérique : une technique de Résolution des équations nonlinéaires, (2007), Hermes Science Publications
[8] Koutsawa, Y.; Charpentier, I.; Daya, E.M.; Cherkaoui, M., A generic approach for the solution of nonlinear residual equations. part I: the diamant toolbox, Computer methods in applied mechanics and engineering, 198, 572-577, (2008) · Zbl 1228.74029
[9] Bilasse, M.; Charpentier, I.; Daya, E.M.; Koutsawa, Y., A generic approach for the solution of nonlinear residual equations. part II: homotopy and complex nonlinear eigenvalue method, Computer methods in applied mechanics and engineering, 198, 3999-4004, (2009) · Zbl 1231.74133
[10] Charpentier, I., Sensitivity of solutions computed through the asymptotic numerical method, Comptes rendus mecanique, 336, 788-793, (2008) · Zbl 1158.65315
[11] Moita, J.S.; Infante Barbosa, J.; Mota Soares, C.M.; Mota Soares, C.A., Sensitivity analysis and optimal design of geometrically nonlinear laminated plates and shells, Computers & structures, 76, 407-420, (2000)
[12] Beghini, A.; Bazant, Z.; Waas, A.; Basu, S., Postcritical imperfection sensitivity of sandwich or homogenized orthotropic columns soft in shear and in transverse deformation, International journal of solids and structures, 43, 5501-5524, (2006) · Zbl 1120.74577
[13] Biagi, R.; Bart-Smith, H., Imperfection sensitivity of pyramidal core sandwich structures, International journal of solids and structures, 44, 4690-4706, (2007) · Zbl 1166.74329
[14] Choi, K.K.; Santos, J.L.T., Design sensitivity analysis of nonlinear structural systems. part I: theory, International journal for numerical methods in engineering, 24, 2039-2055, (1987) · Zbl 0621.73110
[15] de Lima, A.M.G.; Faria, A.W.; Rade, D.A., Sensitivity analysis of frequency response functions of composite sandwich plates containing viscoelastic layers, Composite structures, 92, 364-376, (2010)
[16] Kepler, J.; Bull, P., Sensitivity of structurally loaded sandwich panels to localized ballistic penetration, Composites science and technology, 69, 696-703, (2009)
[17] Sliva, G.; Brezillon, A.; Cadou, J.-M.; Duigou, L., A study of the eigenvalue sensitivity by homotopy and perturbation methods, Journal of computational and applied mathematics, 234, 2297-2302, (2010) · Zbl 1402.65029
[18] Choi, K.K.; Kim, N.H., Structural sensitivity analysis and optimization 2 nonlinear systems and applications, vol. 2, (2004), Springer-Verlag
[19] L. Hascoët, V. Pascual, TAPENADE 2.1 User’s Guide, Rapport technique 300, INRIA, Sophia Antipolis, 2004. <http://www.inria.fr/rrrt/rt-0300.html>.
[20] Bischof, C.H.; Bücker, H.M.; Lang, B.; Rasch, A.; Vehreschild, A., Combining source transformation and operator overloading techniques to compute derivatives for MATLAB programs, (), 65-72, doi:10.1109/SCAM.2002.1134106
[21] Griewank, A.; Juedes, D.; Utke, J., ADOL-C, a package for the automatic differentiation of algorithms written in C/C++, ACM transactions on mathematical software, 22, 131-167, (1996) · Zbl 0884.65015
[22] Charpentier, I.; Utke, J., Fast higher-order derivative tensors with rapsodia, Optimization methods & software, 24, 1-14, (2009) · Zbl 1166.65009
[23] Rich, L.; Hill, D., Automatic differentiation in MATLAB, Applied numerical mathematics, 9, 33-43, (1992) · Zbl 0753.65017
[24] Forth, S., An efficient overloaded implementation of forward mode automatic differentiation in MATLAB, ACM transactions on mathematical software, 32, 195-222, (2006) · Zbl 1365.65053
[25] T.F. Coleman, A. Verma, ADMAT: An Automatic Differentiation Toolbox for MATLAB, Computer Science Department, Cornell University, 1998.
[26] Chang, Y.; Corliss, G., Solving ordinary differential equations using Taylor series, ACM transactions on mathematical software, 8, 114-144, (1982) · Zbl 0503.65046
[27] Aşik, M.Z.; Tezcan, S., A mathematical model for the behavior of laminated Glass beams, Computers & structures, 83, 1742-1753, (2005)
[28] Aşik, M.Z.; Tezcan, S., Laminated Glass beams: strength factor and temperature effect, Computers & structures, 84, 364-373, (2006)
[29] Koutsawa, Y.; Daya, E.M., Static and free vibration analysis of laminated Glass beam on viscoelastic supports, International journal of solids and structures, 44, 8735-8750, (2007) · Zbl 1167.74446
[30] Tomblin, J.S.; Barbero, E.J.; Godoy, L.A., Imperfection sensitivity of fiber microbuckling in elastic-nonlinear polymer – matrix composites, International journal of solids and structures, 34, 1667-1679, (1997) · Zbl 0944.74534
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.