Constitutive modeling and finite element approximation of B2-R-B19\(^{\prime}\) phase transformations in Nitinol polycrystals. (English) Zbl 1230.74146

Summary: A path-dependent constitutive model is proposed for the stress-induced phase transformation of Nitinol single crystals between austenite, rhombohedral and martensite phases. A multi-directional active set strategy is employed to resolve the path and state of the transformation. The resulting algorithm is implemented using a multi-scale finite element-based method which extends the applicability of the model to textured Nitinol polycrystals. Representative numerical simulations are included and show good agreement with experimental results.


74N05 Crystals in solids
74S05 Finite element methods applied to problems in solid mechanics


Full Text: DOI


[1] Miyazaki, S.; Otsuka, K., Deformation and transition behavior associated with the R-phase in ti – ni alloys, Metall. trans. A, 17A, 53-63, (1986)
[2] Shindo, D.; Murakami, Y.; Ohba, T., Understanding precursor phenomena for the R-phase transformation in ti – ni-based alloys, MRS bull., 27, 2, 121-127, (2002)
[3] Otsuka, K.; Ren, X., Physical metallurgy of ti – ni-based shape memory alloys, Prog. mater. sci., 50, 511-678, (2005)
[4] McNaney, J.M.; Imbeni, V.; Jung, Y.; Papadopoulos, P.; Ritchie, R.O., An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading, Mech. mater., 35, 969-986, (2003)
[5] Sittner, P.; Landa, M.; Lukas, P.; Novak, V., R-phase transformation phenomena in thermomechanically loaded niti polycrystals, Mech. mater., 38, 475-492, (2006)
[6] Duerig, T.W., Some unsolved aspects of Nitinol, Mater. sci. engrg. A, 430-440, 69-74, (2006)
[7] Jung, Y.; Papadopoulos, P.; Ritchie, R.O., Constitutive modeling and numerical simulation of multivariant phase transformation in superelastic shape-memory alloys, Int. J. numer. meth. engrg., 60, 429-460, (2004) · Zbl 1060.74579
[8] Ortiz, M.; Repetto, E.A., Nonconvex energy minimization and dislocation structures in ductile single crystals, J. mech. phys. solids, 47, 397-462, (1999) · Zbl 0964.74012
[9] Miehe, C.; Schotte, J.; Lambrecht, M., Homogenization of inelastic solid materials at finite strains based on incremental minimization principles application to the texture analysis of polycrystals, J. mech. phys. solids, 50, 2123-2167, (2002) · Zbl 1151.74403
[10] Sengupta, A.; Papadopoulos, P.; Taylor, R.L., Multiscale finite element modeling of superelasticity in Nitinol polycrystals, Comput. mech., 43, 573-584, (2009)
[11] Ling, H.C.; Karlow, R., Stress-induced shape changes and shape memory in the R and martensite transformations in equiatomic niti, Metall. trans. A, 12A, 2101-2111, (1981)
[12] Miyazaki, S.; Wayman, C.M., The R-phase transition and associated shape memory mechanism in ti – ni single crystals, Acta metall., 36, 1, 181-192, (1988)
[13] Miyazaki, S.; Kimura, S.; Otsuka, S., Shape-memory effect and pseudoelasticity associated with the R-phase transition in ti-50.5 at.
[14] Sittner, P.; Novak, V.; Lukas, P.; Landa, M., Stress – strain – temperature behaviour due to B2-R-B19′ transformation in niti polycrystals, J. engrg. mater. tech., 128, 268-278, (2006)
[15] Hane, K.F.; Shield, T.W., Microstructure in the cubic to monoclinic transition in titanium – nickel shape memory alloys, Acta mater., 47, 2603-2617, (1999)
[16] Hane, K.F.; Shield, T.W., Microstructure in the cubic to trigonal transition, Mater. sci. engrg. A, A291, 147-159, (2000)
[17] Zhang, X.; Sehitoglu, H., Crystallography of the B2-R-B19′ phase transformations in niti, Mater. sci. engrg. A, 374, 292-302, (2004)
[18] Matsumoto, O.; Miyazaki, S.; Otsuka, K.; Tamura, H., Crystallography of martensitic transformation in ti – ni single crystals, Acta metall., 35, 8, 2137-2144, (1987)
[19] Siredey, N.; Patoor, E.; Berveiller, M.; Eberhardt, A., Constitutive equations for polycrystalline thermoelastic shape memory alloys. part I: intragranular interactions and behavior of the grain, Int. J. solids struct., 36, 4289-4315, (1999) · Zbl 0946.74041
[20] Lexcellent, C.; Raniecki, B.; Tanaka, K., Thermodynamic models of pseudoelastic behavior of shape memory alloys, Arch. mech., 44, 261-284, (1992) · Zbl 0825.73044
[21] Wenk, H.-R.; Matthies, S.; Donovan, J.; Chateigner, D., BEARTEX: a windows-based program system for quantitative texture analysis, J. appl. cryst., 31, 262-269, (1998)
[22] R.L. Taylor, FEAP - a finite element analysis program: Users Manual, University of California, Berkeley, 2008. <http://www.ce.berkeley.edu/ rlt>.
[23] Bonet, J.; Bhargava, P., A uniform deformation gradient hexahedron element with artificial hourglass control, Int. J. numer. meth. engrg., 48, 2809-2828, (1995) · Zbl 0835.73069
[24] Luenberger, D.G., Linear and nonlinear programming, (1984), Addison-Wesley Reading · Zbl 0241.90052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.