×

zbMATH — the first resource for mathematics

Periodic BVPs in ODEs with time singularities. (English) Zbl 1231.34072
Summary: We show the existence of solutions to a nonlinear singular second order ordinary differential equation, \[ u''(t)=\frac{a}{t}u'(t)+\lambda f(t,u(t),u'(t)) \] subject to periodic boundary conditions, where \(a>0\) is a given constant, \(\lambda >0\) is a parameter, and the nonlinearity \(f(t,x,y)\) satisfies the local Carathéodory conditions on \([0,T]\times \mathbb{R}\times \mathbb{R}\). Here, we study the case that a well-ordered pair of lower and upper functions does not exist and therefore the underlying problem cannot be treated by well-known standard techniques. Instead, we assume the existence of constant lower and upper functions having opposite order. Analytical results are illustrated by means of numerical experiments.

MSC:
34C25 Periodic solutions to ordinary differential equations
34B16 Singular nonlinear boundary value problems for ordinary differential equations
Software:
bvpsuite
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Budd, C.; Koch, O.; Weinmüller, E., From nonlinear PDEs to singular odes, Appl. numer. math., 56, 413-422, (2006) · Zbl 1089.65104
[2] Hammerling, R.; Koch, O.; Simon, C.; Weinmüller, E., Numerical solution of eigenvalue problems in electronic structure computations, J. comput. phys., 181, 1557-1561, (2010) · Zbl 1216.65096
[3] Kitzhofer, G.; Koch, O.; Lima, P.; Weinmüller, E., Efficient numerical solution of the density profile equation in hydrodynamics, J. sci. comput., (2006) · Zbl 1178.76280
[4] Weinmüller, E., On the boundary value problems for systems of ordinary second order differential equations with a singularity of the first kind, SIAM J. math. anal., 15, 287-307, (1984) · Zbl 0537.34017
[5] Lee, J.W.; O’Regan, D., Existence of solutions to some initial value, two-point, and multi-point voundary value problems with discontinuous nonlinearities, Appl. anal., 33, 57-77, (1989) · Zbl 0643.34018
[6] Agarwal, R.P.; O’Regan, D., Singular problems arising in circular membrane theory, Dyn. contin. discrete impuls. syst., ser. A math. anal., 10, 6, 965-972, (2003) · Zbl 1056.34029
[7] Baxley, J.V.; Gersdorff, G.S., Singular reaction – diffusion boundary value problem, J. differential equations, 115, 441-457, (1995) · Zbl 0815.35019
[8] Hlavacek, V.; Marek, M.; Kubicek, M., Modeling of chemical reactors—X. multiple solutions of enthalpy and mass balances for a catalytic reaction within a porous catalyst particle, Chem. eng. sci., 23, 1083-1097, (1968)
[9] Johnson, K.N., Circularly symmetric deformation of shallow elastic membrane caps, Quart. appl. math., 55, 537-550, (1997) · Zbl 0885.73027
[10] Rachůnková, I.; Pulverer, G.; Weinmüller, E., A unified approach to singular problems arising in the membrane theory, Appl. math., 55, 47-75, (2010) · Zbl 1224.34072
[11] Shin, J.Y., A singular nonlinear differential equation arising in the homann flow, J. math. anal. appl., 212, 443-451, (1997) · Zbl 0883.34021
[12] Rachůnková, I.; Staněk, S.; Tvrdý, M., Solvability of nonlinear singular problems for ordinary differential equations, (2008), Hindawi Publ. Corp. New York · Zbl 1228.34003
[13] Rachůnková, I.; Staněk, S.; Weinmüller, E.; Zenz, M., Limit properties of solutions of singular second-order differential equations, Bound. value probl., 2009, 28, (2009), Article ID 905769 · Zbl 1189.34048
[14] Rachůnková, I.; Staněk, S.; Weinmüller, E.; Zenz, M., Neumann problems with time singularities, Comput. math. appl., 60, 722-733, (2010) · Zbl 1201.34038
[15] Dickey, R.W., Rotationally symmetric solutions for shallow membrane caps, Quart. appl. math., 47, 571-581, (1989) · Zbl 0683.73022
[16] Kiguradze, I.T., Some singular boundary value problems for ordinary differential equations, (1975), ITU Tbilisi, (in Russian) · Zbl 0521.34019
[17] Polášek, V.; Rachůnková, I., Singular periodic problem for nonlinear ordinary differential equations with phi-Laplacian, Electron. J. differ.equ., 27, 1-12, (2006) · Zbl 1098.34014
[18] Deimling, K., Nonlinear functional analysis, (1985), Springer Berlin Heidelberg · Zbl 0559.47040
[19] Bihari, I., A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta math. acad. sci. hungar., 7, 71-94, (1956) · Zbl 0070.08201
[20] Kitzhofer, G.; Pulverer, G.; Simon, C.; Koch, O.; Weinmüller, E., The new {\scmatlab} solver for the solution of singular implicit BVPs, JNAIAM, J. numer. anal. ind. appl. math., 5, 113-134, (2010) · Zbl 1432.65100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.