×

zbMATH — the first resource for mathematics

An algorithmic approach for analysis of finite-source retrial systems with unreliable servers. (English) Zbl 1231.90149
Summary: This paper aims at presenting an approach for analyzing finite-source retrial systems with servers subject to breakdowns and repairs, using generalized stochastic Petri nets (GSPNs). This high-level formalism allows a simple representation of such systems with different breakdown disciplines. From the GSPN model, a continuous time Markov chain (CTMC) can be automatically derived. However, for multiserver retrial systems with unreliable servers, the models may have a huge state space. Using the GSPN model as a support, we propose an algorithm for directly computing the infinitesimal generator of the CTMC without generating the reachability graph. In addition, we develop the formulas of the main stationary performance and reliability indices, as a function of the number of servers, the size of the customer source and the stationary probabilities. Through numerical examples, we discuss the effect of the system parameters and the breakdown disciplines on performance.

MSC:
90B25 Reliability, availability, maintenance, inspection in operations research
68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)
Software:
MOSEL; lcpSim
PDF BibTeX Cite
Full Text: DOI
References:
[1] Van Do, Tien, A new computational algorithm for retrial queues to cellular mobile systems with guard channels, Computers & industrial engineering, 59, 865-872, (2010)
[2] Yang, T.; Templeton, J.G.C., A survey on retrial queues, Queueing systems, 2, 201-233, (1987) · Zbl 0658.60124
[3] Falin, G.I., A survey of retrial queues, Queueing systems, 7, 127-167, (1990) · Zbl 0709.60097
[4] Kulkarni, V.G.; Liang, H.M., Retrial queues revisited, () · Zbl 0871.60074
[5] Artalejo, J.R., Retrial queues with a finite number of sources, Journal of the Korean mathematical society, 35, 503-525, (1998) · Zbl 0930.60079
[6] Artalejo, J.R.; Falin, J.I., Standard and retrial queueing systems: A comparative analysis, Revista matematica complutense, 15, 101-129, (2002) · Zbl 1009.60079
[7] Falin, G.I.; Templeton, J.G.C., Retrial queues, (1997), Chapman and Hall London · Zbl 0944.60005
[8] Artalejo, J.R.; Gómez-Corral, A., Retrial queueing systems: A computational approach, (2008), Springer Berlin · Zbl 1161.60033
[9] Artalejo, J.R., Accessible bibliography on retrial queues: progress in 2000-2009, Mathematical and computer modelling, 51, 1071-1081, (2010) · Zbl 1198.90011
[10] Almasi, B.; Roszik, J.; Sztrik, J., Homogeneous finite-source retrial queues with server subject to breakdowns and repairs, Mathematical and computer modelling, 42, 673-682, (2005) · Zbl 1090.90036
[11] Almasi, B.; Roszik, J.; Sztrik, J., Heterogeneous finite-source retrial queues with server subject to breakdowns and repairs, Journal of mathematical sciences, 132, 677-685, (2006) · Zbl 1411.60139
[12] Sztrik, J.; Efrosinin, D., Tool supported reliability analysis of finite-source retrial queues, Automation and remote control, 71, 1388-1393, (2010)
[13] Sztrik, J.; Kim, C.S., Tool supported performability investigations of heterogeneous finite-source retrial queues, Annales universitatis scientiarum budapestinensis de rolando Eötvös nominatae, 32, 201-220, (2010) · Zbl 1240.90111
[14] Aissani, A.; Artalejo, J.R., On the single server retrial queue subject to breakdowns, Queueing systems, 30, 309-321, (1998) · Zbl 0918.90073
[15] Wang, J.; Cao, J.; Li, Q., Reliability analysis of the retrial queue with server breakdowns and repairs, Queueing systems, 38, 363-380, (2001) · Zbl 1028.90014
[16] Janssens, G.K., The quasi-random input queueing system with repeated attempts as a model for collision-avoidance star local area network, IEEE transactions on communications, 45, 360-364, (1997)
[17] Roszik, J.; Sztrik, J.; Kim, C., Retrial queues in the performance modeling of cellular mobile networks using MOSEL, International journal of simulation: systems, science and technology, 1, 2, 38-47, (2005)
[18] Tran-Gia, P.; Mandjes, M., Modeling of customer retrial phenomenon in cellular mobile networks, IEEE journal on selected areas in communications, 15, 1406-1414, (1997)
[19] Houck, D.J.; Lai, W.S., Traffic modeling and analysis of hybrid fiber-coax systems, Computer networks and ISDN systems, 30, 821-834, (1998)
[20] Roszik, J.; Sztrik, J., Performance analysis of finite-source retrial queues with nonreliable heterogenous servers, Journal of mathematical sciences, 146, 6033-6038, (2007)
[21] Gharbi, N.; Ioualalen, M., GSPN analysis of retrial systems with servers breakdowns and repairs, Applied mathematics and computation, 174, 1151-1168, (2006) · Zbl 1156.68319
[22] Ajmone Marsan, M.; Balbo, G.; Conte, G.; Donatelli, S.; Franceschinis, G., Modelling with generalized stochastic Petri nets, (1995), John Wiley & Sons New York · Zbl 0843.68080
[23] Diaz, M., LES Réseaux de Petri-modèles fondamentaux, (2001), Hermés Science Publications Paris
[24] Little, J.D.C., A proof of the queueing formula: \(L = \lambda . W\), Operations research, 9, 383-387, (1961) · Zbl 0108.14803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.