×

The link between the shape of the irrational Aubry-Mather sets and their Lyapunov exponents. (English) Zbl 1257.37028

After the fundamental work of Poincaré on the restricted 3-body problem, the twist maps of the two-dimensional annulus \(\mathbb A=\mathbb T\times\mathbb R\) are one of the central motivating examples in Hamiltonian dynamics. In this article the author study the relationship between the geometric shape of an Aubry-Mather set of an exact symplectic twist map and the hyperbolicity of its dynamics and prove the following interesting results:
(1) a Mather measure has zero Lyapunov exponents if and only if its support is \(C^1\)-regular almost everywhere;
(2) a Mather measure has nonzero Lyapunov exponents if and only if its support is \(C^1\)-irregular almost everywhere;
(3) an Aubry-Mather set is uniformly hyperbolic if and only if it is irregular everywhere;
(4) the Aubry-Mather sets which are close to the KAM invariant curves, even if they may be \(C^1\)-irregular, are not too irregular, i.e., have small paratingent cones.
A notion of \(C^1\)-regularity is introduced by the author as follows. A subset \(M\) is \(C^1\)-regular at \(x\in M\) if there exists a line \(D\) of \(T_x\mathbb A\) such that the paratingent cone \(P_M(x)\) is a subset of \(D\), otherwise \(M\) is \(C^1\)-irregular at \(x\). Here, \(P_M(x)\) is the cone of \(T_x\mathbb A\) whose elements are the limits \(v =\lim_{n\to\infty} (x_n-y_n)/\tau_n\); where \((x_n)\) and \((y_n)\) are sequences of elements of \(M\) converging to \(x\), \((\tau_n)\) is a sequence of elements of \(\mathbb R^*_+\) converging to \(0\), and \(x_n-y_n\) is the unique lift of this element of \(\mathbb A\) that belongs to \((-1/2,1/2)\times(-1/2,1/2)\).

MSC:

37E40 Dynamical aspects of twist maps
37J50 Action-minimizing orbits and measures (MSC2010)

References:

[1] M. Arnaud, ”Three results on the regularity of the curves that are invariant by an exact symplectic twist map,” Publ. Math. Inst. Hautes Études Sci., iss. 109, pp. 1-17, 2009. · Zbl 1177.53070 · doi:10.1007/s10240-009-0017-8
[2] M. Arnaud, ”Fibrés de Green et régularité des graphes \(C^0\)-lagrangiens invariants par un flot de Tonelli,” Ann. Henri Poincaré, vol. 9, iss. 5, pp. 881-926, 2008. · Zbl 1143.70009 · doi:10.1007/s00023-008-0375-7
[3] V. I. Arnol\('\)d, ”Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian,” Uspehi Mat. Nauk, vol. 18, iss. 5 (113), pp. 13-40, 1963. · Zbl 0129.16606 · doi:10.1070/rm1963v018n05ABEH004130
[4] J. Aubin and H. Frankowska, Set-Valued Analysis, Boston, MA: Birkhäuser, 1990, vol. 2. · Zbl 0713.49021
[5] S. Aubry and P. Y. Le Daeron, ”The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states,” Phys. D, vol. 8, iss. 3, pp. 381-422, 1983. · Zbl 1237.37059 · doi:10.1016/0167-2789(83)90233-6
[6] M. L. Bialy and R. S. MacKay, ”Symplectic twist maps without conjugate points,” Israel J. Math., vol. 141, pp. 235-247, 2004. · Zbl 1055.37060 · doi:10.1007/BF02772221
[7] G. D. Birkhoff, ”Proof of Poincaré’s geometric theorem,” Trans. Amer. Math. Soc., vol. 14, iss. 1, pp. 14-22, 1913. · JFM 44.0761.01 · doi:10.2307/1988766
[8] A. Chenciner, ”La dynamique au voisinage d’un point fixe elliptique conservatif: de Poincaré et Birkhoff à Aubry et Mather,” in Seminar Bourbaki, 1983/84, , 1985, vol. 121-122, pp. 147-170. · Zbl 0582.58013
[9] G. Contreras and R. Iturriaga, ”Convex Hamiltonians without conjugate points,” Ergodic Theory Dynam. Systems, vol. 19, iss. 4, pp. 901-952, 1999. · Zbl 1044.37046 · doi:10.1017/S014338579913387X
[10] C. Falcolini and R. de la Llave, ”A rigorous partial justification of Greene’s criterion,” J. Statist. Phys., vol. 67, iss. 3-4, pp. 609-643, 1992. · Zbl 0892.58045 · doi:10.1007/BF01049722
[11] J. N. Mather and G. Forni, ”Action minimizing orbits in Hamiltonian systems,” in Transition to Chaos in Classical and Quantum Mechanics, New York: Springer-Verlag, 1994, vol. 1589, pp. 92-186. · Zbl 0822.70011 · doi:10.1007/BFb0074076
[12] P. Foulon, ”Estimation de l’entropie des systèmes lagrangiens sans points conjugués,” Ann. Inst. H. Poincaré Phys. Théor., vol. 57, iss. 2, pp. 117-146, 1992. · Zbl 0806.58029
[13] A. Furman, ”On the multiplicative ergodic theorem for uniquely ergodic systems,” Ann. Inst. H. Poincaré Probab. Statist., vol. 33, iss. 6, pp. 797-815, 1997. · Zbl 0892.60011 · doi:10.1016/S0246-0203(97)80113-6
[14] C. Golé, Symplectic Twist Maps. Global Variational Techniques, River Edge, NJ: World Scientific Publishing Co., 2001, vol. 18. · Zbl 1330.37001 · doi:10.1142/9789812810762
[15] L. W. Green, ”A theorem of E. Hopf,” Michigan Math. J., vol. 5, pp. 31-34, 1958. · Zbl 0134.39601 · doi:10.1307/mmj/1028998009
[16] J. M. Greene, ”A method for determining a stochastic transition,” J. Math. Phys., vol. 20, pp. 1183-1201, 1979. · doi:10.1063/1.524170
[17] B. Hasselblatt and A. Katok, A First Course in Dynamics. With a Panorama of Recent Developments, New York: Cambridge Univ. Press, 2003. · Zbl 1027.37001
[18] M. Herman, ”Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations,” Inst. Hautes Études Sci. Publ. Math., iss. 49, pp. 5-233, 1979. · Zbl 0448.58019 · doi:10.1007/BF02684798
[19] M. Herman, ”Sur les courbes invariantes par les difféomorphismes de l’anneau,” Astérisque, vol. 103-104, 1983. · Zbl 0532.58011
[20] R. Iturriaga, ”A geometric proof of the existence of the Green bundles,” Proc. Amer. Math. Soc., vol. 130, iss. 8, pp. 2311-2312, 2002. · Zbl 1067.37037 · doi:10.1090/S0002-9939-02-06540-1
[21] A. N. Kolmogorov, ”On conservation of conditionally periodic motions for a small change in Hamilton’s function,” Dokl. Akad. Nauk SSSR, vol. 98, pp. 527-530, 1954. · Zbl 0056.31502
[22] A. N. Kolmogorov, S. Fomine, and V. M. Tihomirov, Eléments de la théorie des fonctions et de l’analyse fonctionnelle, Moscow: Éditions Mir, 1974. · Zbl 0299.46001
[23] P. Le Calvez, ”Propriétés dynamiques des difféomorphismes de l’anneau et du tore,” Astérisque, vol. 204, p. 131, 1991. · Zbl 0784.58033
[24] P. Le Calvez, ”Les ensembles d’Aubry-Mather d’un difféomorphisme conservatif de l’anneau déviant la verticale sont en général hyperboliques,” C. R. Acad. Sci. Paris Sér. I Math., vol. 306, iss. 1, pp. 51-54, 1988. · Zbl 0639.58005
[25] R. S. MacKay, ”Hyperbolic cantori have dimension zero,” J. Phys. A, vol. 20, iss. 9, p. l559-l561, 1987. · Zbl 0623.58031 · doi:10.1088/0305-4470/20/3/020
[26] R. S. MacKay, ”Greene’s residue criterion,” Nonlinearity, vol. 5, iss. 1, pp. 161-187, 1992. · Zbl 0749.58036 · doi:10.1088/0951-7715/5/1/007
[27] R. S. MacKay, J. D. Meiss, and I. C. Percival, ”Resonances in area-preserving maps,” Phys. D, vol. 27, iss. 1-2, pp. 1-20, 1987. · Zbl 0622.58016 · doi:10.1016/0167-2789(87)90002-9
[28] R. Mañé, ”Quasi-Anosov diffeomorphisms and hyperbolic manifolds,” Trans. Amer. Math. Soc., vol. 229, pp. 351-370, 1977. · Zbl 0356.58009 · doi:10.2307/1998515
[29] R. Mañé, Ergodic Theory and Differentiable Dynamics, New York: Springer-Verlag, 1987, vol. 8. · Zbl 0616.28007
[30] J. N. Mather, ”Existence of quasi-periodic orbits for twist homeomorphisms of the annulus,” Topology, vol. 21, iss. 4, pp. 457-467, 1982. · Zbl 0506.58032 · doi:10.1016/0040-9383(82)90023-4
[31] J. Moser, ”On invariant curves of area-preserving mappings of an annulus,” Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, vol. 1962, pp. 1-20, 1962. · Zbl 0107.29301
[32] M. Pollicott, Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds, Cambridge: Cambridge Univ. Press, 1993, vol. 180. · Zbl 0772.58001
[33] H. Rüssmann, ”On the existence of invariant curves of twist mappings of an annulus,” in Geometric Dynamics, New York: Springer-Verlag, 1983, vol. 1007, pp. 677-718. · Zbl 0531.58041 · doi:10.1007/BFb0061441
[34] M. Shub, Stabilité Globale des Systèmes Dynamiques, Paris: Société Mathématique de France, 1978, vol. 56. · Zbl 0396.58014
[35] K. F. Siburg, The principle of Least Action in Geometry and Dynamics, New York: Springer-Verlag, 2004, vol. 1844. · Zbl 1060.37048 · doi:10.1007/b97327
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.