×

zbMATH — the first resource for mathematics

Residual based sampling in POD model order reduction of drift-diffusion equations in parametrized electrical networks. (English) Zbl 1237.78038
The paper under review is concerned with integrated circuits for semiconductors modeled by drift-diffusion equations. The authors describe the numerical treatment of the network using the method of lines. In order to obtain a reduced order model which is valid over a considerable range of parameters, the authors adapt the reduced basis method combined with the greedy approach to the present setting. Numerical results illustrate the performance of the approach introduced.

MSC:
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
82D37 Statistical mechanical studies of semiconductors
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
78M34 Model reduction in optics and electromagnetic theory
Software:
DASSL; deal.ii
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Anile
[2] A. Anile N. Nikiforakis V. Romano G. Russo
[3] Bodestedt, Math. Comput. Model. Dyn. Syst. 13(1) pp 1– (2007) · Zbl 1123.78009 · doi:10.1080/13873950600557329
[4] F. Brezzi L. Marini S. Micheletti P. Pietra R. Sacco S. Wang
[5] Bui-Thanh, SIAM J. Sci. Comput. 30(6) pp 3270– (2008) · Zbl 1196.37127 · doi:10.1137/070694855
[6] Charturantabut, SIAM J. Sci. Comput. 32(5) pp 2737– (2010) · Zbl 1217.65169 · doi:10.1137/090766498
[7] Estévez Schwarz, Int. J. Circuit Theor. Appl. 28(2) pp 131– (2000) · Zbl 1054.94529 · doi:10.1002/(SICI)1097-007X(200003/04)28:2<131::AID-CTA100>3.0.CO;2-W
[8] D. Estévez Schwarz U. Feldmann R. März S. Sturtzel C. Tischendorf
[9] Gummel, IEEE Trans. Electron Devices 11(10) pp 455– (1964) · doi:10.1109/T-ED.1964.15364
[10] M. Günther
[11] M. Günther U. Feldmann J. ter Maten
[12] B. Haasdonk M. Ohlberger
[13] M. Hinze M. Kunkel
[14] M. Hinze M. Kunkel A. Steinbrecher T. Stykel
[15] M. Hinze M. Kunkel M. Vierling
[16] P. Markowich
[17] A. Patera G. Rozza
[18] Petzold, IMACS Trans. Sci. Comput. 1 pp 65– (1993)
[19] S. Selberherr
[20] Selva Soto, PAMM, Proceedings in Applied Mathematics and Mechanics 6(1) pp 51– (2006) · doi:10.1002/pamm.200610014
[21] Selva Soto, Appl. Numer. Math. 53 pp 2– (2005) · Zbl 1073.65094 · doi:10.1016/j.apnum.2004.08.009
[22] Sirovich, Q. Appl. Math. 45 pp 561– (1987) · Zbl 0676.76047 · doi:10.1090/qam/910462
[23] C. Tischendorf
[24] F. van Belzen S. Weiland L. Özkan
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.