Periodic solution and decay for some nonlinear wave equations with sublinear dissipative terms. (English) Zbl 0601.35075

This paper is concerned with nonlinear equations in one space dimension of the form \[ u_{tt}-u_{xx}+\rho (x,u_ t)+\beta (x,u)=f(x,t)\quad on\quad I\times {\mathbb{R}},\quad u|_{\partial I}=0\quad for\quad t\in {\mathbb{R}}, \] where I is an intervall and f(x,t) is an \(\omega\)-periodic function in t. In case \(\rho (x,u_ t)=\nu u_ t\), \(\nu >0\) or \(\rho\) (x,v)v\(\geq c_ 0 | v|^{r+2}-c_ 1\) for some \(r\geq 0\), \(c_ 0,c_ 1>0\) (\(\rho\) (x,v) is superlinear as \(| v| \to \infty)\) this problem has been considered even for higher dimensional equations and more strongly nonlinear equations.
The author here considers the sublinear case (\(\rho\) (x,v)v\(\geq c_ 0 | v|^{2-r}-c_ 1\) for \(0<r<1\), \(c_ 0,c_ 1>0)\) and gives existence theorems and results concerning the energy decay as \(t\to \infty\).
Reviewer: M.Schneider


35L70 Second-order nonlinear hyperbolic equations
35L05 Wave equation
35B10 Periodic solutions to PDEs
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI


[1] Amerio, L.; Prouse, G., Almost Periodic Functions and Functional Equations (1971), Van Nostrand: Van Nostrand New York · Zbl 0215.15701
[2] Biroli, M., Bounded or almost periodic solution of the nonlinear vibrating membrance equation, Ric. Mat., 22, 190-202 (1973) · Zbl 0274.35042
[3] Clements, J. C., Existence theorems for some nonlinear equation of evolution, Can. J. Math., 22, 726-745 (1970) · Zbl 0199.42003
[4] Ficken, F. A.; Fleishman, B. A., Initial value and time-periodic solutions for nonlinear wave equations, Communs pure appl. Math., 10, 331-356 (1957) · Zbl 0078.27602
[5] Haraux, A., Nonlinear evolution equation; global behavior of solutions, (Lecture Notes in Mathematics, 841 (1981), Springer: Springer Berlin) · Zbl 0583.35007
[6] Kannan, R.; Lakshmikantham, V., Periodic solutions of nonlinear hyperbolic problems, Comp. Math. Appl., 9, 479-486 (1983) · Zbl 0549.35085
[7] Kato, H.; Nakao, M., Existence of strong and smooth periodic solutions, Math. Report College Gen. Ed., Kyushu Univ., 14, 57-88 (1983) · Zbl 0549.35054
[8] Lions, J. L., Quelque Méthodes de Résolution des Problém aux Limites Nonliéares (1969), Dunod-Gauthier-Villars: Dunod-Gauthier-Villars Paris · Zbl 0189.40603
[9] Masuda, K., On the existence of periodic solution of non-linear differential equations, J. Fac. Sci. Univ. Tokyo, 1A, 247-257 (1966) · Zbl 0142.38201
[10] Nakao, M., Convergence of solutions of the wave equation with a nonlinear dissipative term, Mem. Fac. Sci. Kyushu Univ., 30, 257-265 (1976), Ser. A · Zbl 0359.35052
[11] Nakao, M., Bounded periodic or almost periodic solutions of nonlinear hyperbolic partial differential equations, J. diff. Eqns, 23, 368-386 (1977) · Zbl 0348.35069
[12] Nakao, M., Bounded, periodic and almost periodic classical solutions of some nonlinear wave equations with a dissipative term, J. Math. Soc. Japan, 30, 375-394 (1978) · Zbl 0386.35004
[13] Nakao, M., A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan, 30, 747-762 (1978) · Zbl 0388.35007
[14] Nakao, M., Existence of classical periodic solutions of some nonlinear wave equations in one space dimension, Math. Rep. College Gen. Ed., Kyushu Univ., 12, 77-91 (1980) · Zbl 0456.35058
[15] Nakao, M., On solutions to the initial-boundary value problem for \((∂/ ∂t )u− Δβ (u)=f\), Math. Soc. Japan, 35, 71-83 (1983) · Zbl 0494.35055
[16] Prodi, G., Soluzioni periodiche dell’equazione delle onde con termine dissipativo nonlineare, Rc. Semin. Mat. Padova, 36, 37-49 (1966) · Zbl 0145.35601
[17] Rabinowitz, P. H., Periodic solutions of nonlinear hyperbolic partial differential equations II, Communs pure appl. Math., 22, 15-39 (1969) · Zbl 0157.17301
[18] Wahl, W. V., Periodic solutions of nonlinear wave equations with a dissipative term, Math. Annln, 190, 313-322 (1971) · Zbl 0198.43704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.