Submeasures and locally solid topologies on Riesz spaces. (English) Zbl 0601.46006

The main tool in this paper is a general representation theorem, presented in Section 2, which gives necessary and sufficient conditions in order that an Archimedean Riesz space L admits a suitable space \(L^ 0\) of measurable functions as its universal completion \(L^ u\). As no assumptions concerning the existence of order-continuous functionals on L are imposed, direct sums of (finite normal) submeasure spaces appear.
Our main objective is to study, by applying the representation result, minimal Hausdorff locally solid topologies on Riesz spaces. This is done in the second part of the paper, improving upon earlier results by Fremlin, Aliprantis and Burkinshaw. In particular, it is shown that a Riesz space L admits a minimal Hausdorff locally solid topology \(\lambda\) if and only if L admits the \(L^ 0\) obtained in the representation theorem as its universal completion and (modulo the embedding) \(\lambda\) is the restriction of the canonical topology of ”convergence in submeasure” on this \(L^ 0\).


46A40 Ordered topological linear spaces, vector lattices
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
Full Text: DOI EuDML


[1] Aliprantis, C., Burkinshaw, O.: Locally solid Riesz spaces. New York: Academic Press 1978 · Zbl 0402.46005
[2] Fremlin, D.: Topological Riesz spaces and measure theory. Cambridge: University Press 1974 · Zbl 0273.46035
[3] Kantorovich, L.V., Akilov, G.P.: Functional analysis (2nd Edition). Oxford: Pergamon Press 1982 · Zbl 0484.46003
[4] Labuda, I.: On locally solid Riesz spaces. Bull. Pol. Acad. Math.32, 689-694 (1984) · Zbl 0572.46005
[5] Abramovich, Yu.A.: On the maximal normed extension of partially ordered normed spaces, Vestnik Leningrad. Univ. 26 no 1 (1970), 7-17; or English tranls., in Vestnik Leningrad Univ. Math.3, 1-12 (1976)
[6] Aliprantis, C., Burkinshaw, O.: Minimal topologies andL p spaces. Illinois. J. Math.24, 164-172 (1980) · Zbl 0403.46008
[7] Aronszajn, N., Szeptycki, P.: On general integral transformations. Math. Ann.163, 127-154 (1966) · Zbl 0171.12402
[8] Drewnowski, L.: Topological rings of sets, continuous set functions, integration I?III, Bull. Acad. Pol. Sci., S?r. Sci. Math. Astronom. Phys.20, 269-286, 439-445 (1972) · Zbl 0249.28004
[9] Drewnowski, L.: On subseries convergence in some function spaces.,22, 797-803 (1974) · Zbl 0297.28014
[10] Flachsmeyer J.: Underlying Boolean algebras of topological semifields. In: Topological Structures II, Amsterdam Mathematical Centre Tracts115, 91-103 (1979). · Zbl 0200.00010
[11] Fremlin, D.: Abstract K?the spaces II. Proc. Cambridge Phil. Soc.63, 951-956 (1967) · Zbl 0179.17005
[12] Fremlin, D.: Inextensible Riesz spaces. Math. Proc. Cambridge Phil. Soc.77, 71-89 (1975) · Zbl 0298.46007
[13] Labuda, I.: Completeness type properties of locally solid Riesz spaces. Studia Math.77, 349-372 (1984) · Zbl 0543.46002
[14] Labuda, I.: On boundedly order-complete locally solid Riesz spaces. Studia Math.81, 245-258 (1985) · Zbl 0607.46003
[15] Labuda, I.: Spaces of measurable functions. Commentationes Math. Tomus Specialis in Honorem Ladislai Orlicz II 217-249 (1979)
[16] Labuda, I., Szeptycki, P.: Extensions of integral operators. To appear · Zbl 0617.45013
[17] Luxemburg, W.A.J., Zaanen, A.C.: Notes on Banach function spaces I?V. Indagationes Math.25, 135-153, 239-263 (1963) · Zbl 0117.08002
[18] Szeptycki, P.: On solid spaces of measurable functions. Bull. Acad. Pol. Sci., S?r. Sci. Math. Astronom. Phys.30, 115-116 (1982) · Zbl 0502.46018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.