Stojaković, Mila Common fixed point theorems in complete metric and probabilistic metric spaces. (English) Zbl 0601.54056 Bull. Aust. Math. Soc. 36, 73-88 (1987). Several common fixed point theorems for four continuous mappings in Menger and metric spaces are proved. These mappings are assumed to satisfy some generalizations of the contraction condition. Cited in 2 ReviewsCited in 5 Documents MSC: 54H25 Fixed-point and coincidence theorems (topological aspects) Keywords:complete Menger spaces; complete metric spaces; common fixed point PDF BibTeX XML Cite \textit{M. Stojaković}, Bull. Aust. Math. Soc. 36, 73--88 (1987; Zbl 0601.54056) Full Text: DOI References: [1] Fischer, Bull. Inst. Math. Acad. Sinica 11 pp 103– (1983) [2] Fischer, Mat. Japon. 28 pp 639– (1983) [3] Ding, Math. Sem. Notes Kobe Univ. 10 pp 623– (1982) [4] DOI: 10.2307/2044139 · Zbl 0473.54037 [5] Stojaković, Indian J. Pure Appl. Math. 17 pp 446– (1986) [6] Hadzić, Math. Japon. 29 pp 124– (1984) [7] Schweizer, Pacific J. Math. 10 pp 313– (1960) · Zbl 0091.29801 [8] DOI: 10.1112/jlms/s1-44.1.441 · Zbl 0167.46202 [9] DOI: 10.2307/1997954 · Zbl 0365.54023 [10] Kasahara, Math. Japon. 23 pp 227– (1978) [11] Hadzić, Fixed point theory in topological vector spaces (1984) [12] Stojaković, Kobe J. Math. 2 pp 1– (1985) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.