zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A modification of the rigid finite element method and its application to the J-lay problem. (English) Zbl 06012513
Summary: This article presents the Rigid Finite Element Method (RFEM), which allows us to take into account the flexibility of a system. Beam-like structures are analyzed, in which large deformations occur. The RFEM has been developed many years ago and successfully applied to practical engineering problems. The main difference between this method and the classical Finite Element Method (FEM) is the element deformation during analysis. In RFEM, the finite elements generated in a discretization process are treated as nondeformable bodies, whilst in FEM the elements are deformable; in RFEM, flexible, mass-less elements with properly chosen coefficients are introduced. A modification of the stiffness coefficients used in RFEM is proposed and explained in the article. It is shown how these new coefficients applied in RFEM lead to the same energy of deformation as in the case when the system is discretized by the classical FEM. This means that the energy of deformation is identical to that obtained in FEM, which leads to identical deformations of the elements. It is of particular importance that the RFEM is a much simpler method, faster in calculations and easier to learn and interpret. Furthermore, the generation of the inertia and stiffness matrices is much faster than in FEM. Another advantage is relatively easy implementation for multicore processor architecture. The calculation examples investigated cover some practical problems related to the offshore pipe laying process. The J-lay method is simulated by the use of the author’s own computer model based on a modified RFEM. The model takes into account wave and sea current loads, hydrodynamic forces and material nonlinearity (plastic strains can develop during large deformation). The simulation results are compared with those obtained from the commercial package ANSYS.
74Mechanics of deformable solids
Full Text: DOI
[1] Shabana A.A.: Dynamics of Multibody Systems. Wiley, New York (1989) · Zbl 0698.70002
[2] Shabana A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1, 189--222 (1997) · Zbl 0893.70008 · doi:10.1023/A:1009773505418
[3] Gerstmayr J., Shabana A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109--130 (2006) · Zbl 1138.74391 · doi:10.1007/s11071-006-1856-1
[4] Wojciech S., Adamiec-Wójcik I.: Nonlinear vibrations of spatial viscoelastic beams. Acta Mech. 98, 15--25 (1993) · Zbl 0775.73159 · doi:10.1007/BF01174290
[5] Wojciech S., Adamiec-Wójcik I.: Experimental and computational analysis of large amplitude vibrations of spatial viscoelastic beams. Acta Mech. 106, 127--136 (1994) · doi:10.1007/BF01213558
[6] Kruszewski, J.: Application of the stiff finite element method for calculation of natural vibration frequency of ship structure. In: Third World Congress of the Theory of Machines and Mechanisms, Kupari, Yugoslavia, pp. 147--160 (1971)
[7] Huston R.L.: Multi-body dynamics including the effect of flexibility and compliance. Comp. Struct. 14, 443--451 (1981) · doi:10.1016/0045-7949(81)90064-X
[8] Nikravesh P., Chung I., Bendict R.L.: Plastic hinge approach to vehicle crash simulation. Comp. Struct. 16, 395--400 (1983) · doi:10.1016/0045-7949(83)90178-5
[9] Winget J.M., Huston R.L.: Cable dynamics--a finite segment approach. Comput. Struct. 6(6), 475--480 (1976) · doi:10.1016/0045-7949(76)90042-0
[10] Connelly J.D., Huston R.L.: The dynamics of flexible multibody systems: a finite segment approach I. Theoretical aspects. Comput. Struct. 50(2), 255--258 (1994) · doi:10.1016/0045-7949(94)90300-X
[11] Connelly J.D., Huston R.L.: The dynamics of flexible multibody systems: a finite segment approach II. Example problems. Comput. Struct. 50(2), 259--262 (1994) · doi:10.1016/0045-7949(94)90301-8
[12] Wittenburg J.: Dynamics of Systems of Rigid Bodies. Teubner, Stuttgart (1977) · Zbl 0363.70004
[13] Banerjee A.K.: Dynamics and control of the WISP shuttle-antennae system. J. Astronaut. Sci. 1, 73--90 (1993)
[14] Schiehlen W.O., Rauh J.: Modelling of flexible multibeam systems by rigid-elastic superelements. Revista Brasiliera de Cienclas Mecanicas 8(2), 151--163 (1986)
[15] Wittbrodt E., Wojciech S.: Application of rigid finite element method to dynamic analysis of spatial systems. J. Guid. Control Dyn. 18(4), 891--898 (1995) · doi:10.2514/3.21474
[16] Wojciech S., Kłosowicz M., Nadolski W.: Nonlinear vibration of a simply supported, viscoelastic inextensible beam and comparison of four methods. Acta Mech. 85, 43--54 (1990) · doi:10.1007/BF01213541
[17] Wojnarowski J., Wojciech S.: Application of the rigid finite element method to modelling of free vibrations of a band saw frame. Mech. Mach. Theory 40(2), 241--258 (2005) · Zbl 1116.74433 · doi:10.1016/j.mechmachtheory.2004.05.013
[18] Wittbrodt E., Adamiec-Wójcik I., Wojciech S.: Dynamics of Flexible Multibody Systems Rigid Finite Element Method. Springer, Berlin, Heidelberg (2006) · Zbl 1101.70004
[19] Braestrup M.W., Andersen J.B., Andersen L.W., Bryndum M.B., Christensen J.C., Nielsen N.J.R.: Design and Installation of Marine Pipelines. Blackwell Science Ltd., Oxford (2005)
[20] Guo B., Song S., Chacko J., Ghalambor A.: Offshore Pipelines. Elsevier, Oxford (2005)
[21] Szczotka M., Maczyński A., Wojciech S.: Mathematical model of a pipelay spread. Arch. Mech. Eng. LIV 1, 27--46 (2007)
[22] Szczotka M.: Pipe laying simulation with an active reel drive. Ocean Eng. 37, 539--548 (2010) · doi:10.1016/j.oceaneng.2010.02.009
[23] Chai Y.T., Varyani K.S.: An absolute coordinate formulation for three-dimensional flexible pipe analysis. Ocean Eng. 33, 23--58 (2006) · doi:10.1016/j.oceaneng.2005.04.006
[24] Vogel H., Natvig B.J.: Dynamics of flexible hose riser systems. J. Offshore Mech. Arct. 109, 244--248 (1987) · doi:10.1115/1.3257016
[25] Vlahopoulos N., Bernitsas M.M.: Three-dimensional nonlinear dynamics of pipelaying. Appl. Ocean Res. 12, 112--125 (1990) · doi:10.1016/S0141-1187(05)80002-1
[26] Kalliontzis C., Andrianis E., Spyropoulos K., Soikas S.: Nonlinear static stress analysis of submarine high pressure pipelines. Comp. Struct. 63, 397--411 (1997) · doi:10.1016/S0045-7949(96)00371-9
[27] Pasqualino I.P., Estefen S.F.: A nonlinear analysis of the buckle propagation problem in deepwater pipelines. Int. J. Solids Struct. 38, 8481--8502 (2001) · Zbl 0992.74042 · doi:10.1016/S0020-7683(01)00113-5
[28] Nakajima, T., Motora, S., Fujino, M.: On the dynamic analysis of multi-component mooring lines. In: 14th Offshore Technology Conference, OTC-4309, pp. 105--121 (1982)
[29] Palmer A.: Touchdown indentation of the seabed. Appl. Ocean Res. 30, 235--238 (2008) · doi:10.1016/j.apor.2008.09.004
[30] Rienstra, S.W.: Analytical approximations for offshore pipelaying problems. In: Proceedings IClAM 87, pp. 99--108. Paris-La Villette (1987)
[31] Zhu D.S., Cheung Y.K.: Optimisation of bouyancy of an articulated stringer on submerged pipelines laid with a barge. Ocean Eng. 24, 301--311 (1997) · doi:10.1016/S0029-8018(96)00012-1
[32] Lenci S., Callegari M.: Simple analytical models for the J-lay problem. Acta Mech. 178, 23--39 (2005) · Zbl 1078.74008 · doi:10.1007/s00707-005-0239-x
[33] Liu G.R., Quek S.S.: The Finite Element Method: A Practical Course. Butterworth-Heinemann, Oxford (2003) · Zbl 1027.74001
[34] Chapman B., Jost G., van der Pas R.: Using OpenMP: Portable Shared Memory Parallel. MIT Press, Cambridge (2008)
[35] Szczotka M., Wojciech S.: Application of joint coordinates and homogeneous transformations to modeling of vehicle dynamics. Nonlinear Dyn. 52(4), 377--393 (2008) · Zbl 1170.70314 · doi:10.1007/s11071-007-9286-2
[36] Morison J.R., O’Brien M.P., Johnson J.W., Schaaf S.A.: The force exerted by surface waves on piles. Pet. Trans. 189, 149--154 (1950)
[37] DNV-RP-F105: Free Spanning Pipelines. Det Norske Veritas, Høvik, Norway (2006)
[38] Verley, R., Lund, K.M.: A soil resistance model for pipelines placed on clay soils. In: 14th International Conference on Offshore Mechanics & Arctic Engineering, Copenhagen (1995)
[39] Chakrabarti S.K.: Handbook of Offshore Engineering. Elsevier, Oxford (2005)
[40] Ansys Documentation: Release 12. SAS IP (2009)