×

zbMATH — the first resource for mathematics

Framed bordism and Lagrangian embeddings of exotic spheres. (English) Zbl 1244.53089
Let \(L\) be a compact exact Lagrangian submanifold of \(T^*S^m\) whose Maslov class vanishes. \(L\) is a rational homology sphere which represents a generator of \(H_m(T^*S^m,\mathbb Z)\). The classical nearby Lagrangian Arnol’d’s conjecture would imply that \(L\) is diffeomorphic to the standard sphere. One approach to proving the diffeomorphism statement which is implied by Arnol’d’s conjecture would be first to prove that \(L\) is a homotopy sphere by establishing the vanishing of its fundamental group, then to use Kervaire’s and Milnor’s classification of exotic spheres to exclude the remaining possibilities. In this paper, the author starts the second part of the program and proves that every homotopy sphere which embeds as a Lagrangian in \(T^*S^{4k+l}\) must bound a compact parallelizable manifold. It implies that if \(\Sigma^{4k+1}\) is an exotic sphere which does not bound a parallelizable manifold, then the cotangent bundles \(T^*\Sigma^{4k+1}\) and \(T^*S^{4k+1}\) are not symplectomorphic. That is, the author proves that such an exotic sphere cannot embed as a Lagrangian in the cotangent bundle of the standard sphere.

MSC:
53D12 Lagrangian submanifolds; Maslov index
55N22 Bordism and cobordism theories and formal group laws in algebraic topology
57R55 Differentiable structures in differential topology
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] R. A. Adams, Sobolev Spaces, New York: Academic Press, 1975, vol. 65. · Zbl 0314.46030
[2] M. F. Atiyah and I. M. Singer, ”The index of elliptic operators. IV,” Ann. of Math., vol. 93, pp. 119-138, 1971. · Zbl 0212.28603 · doi:10.2307/1970756
[3] M. Audin, F. Lalonde, and L. Polterovich, ”Symplectic rigidity: Lagrangian submanifolds,” in Holomorphic Curves in Symplectic Geometry, Basel: Birkhäuser, 1994, vol. 117, pp. 271-322. · Zbl 0802.53001
[4] P. Biran and K. Cieliebak, ”Lagrangian embeddings into subcritical Stein manifolds,” Israel J. Math., vol. 127, pp. 221-244, 2002. · Zbl 1165.53378 · doi:10.1007/BF02784532
[5] M. Berger, A Panoramic View of Riemannian Geometry, New York: Springer-Verlag, 2003. · Zbl 1038.53002 · doi:10.1007/978-3-642-18245-7
[6] L. Buhovsky, ”Homology of Lagrangian submanifolds in cotangent bundles,” Israel J. Math., vol. 143, pp. 181-187, 2004. · Zbl 1090.53063 · doi:10.1007/BF02803498 · arxiv:math/0312265
[7] C. J. Earle and J. Eells, ”A fibre bundle description of Teichmüller theory,” J. Differential Geometry, vol. 3, pp. 19-43, 1969. · Zbl 0185.32901 · projecteuclid.org
[8] A. Floer, ”Monopoles on asymptotically flat manifolds,” in The Floer Memorial Volume, Basel: Birkhäuser, 1995, vol. 133, pp. 3-41. · Zbl 0836.58010
[9] A. Floer, ”The unregularized gradient flow of the symplectic action,” Comm. Pure Appl. Math., vol. 41, iss. 6, pp. 775-813, 1988. · Zbl 0633.53058 · doi:10.1002/cpa.3160410603
[10] A. Floer, H. Hofer, and D. Salamon, ”Transversality in elliptic Morse theory for the symplectic action,” Duke Math. J., vol. 80, iss. 1, pp. 251-292, 1995. · Zbl 0846.58025 · doi:10.1215/S0012-7094-95-08010-7
[11] K. Fukaya, ”Application of Floer homology of Langrangian submanifolds to symplectic topology,” in Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, New York: Springer-Verlag, 2006, vol. 217, pp. 231-276. · Zbl 1089.53064 · doi:10.1007/1-4020-4266-3_06
[12] K. Fukaya, Y. -G. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer Theory: Anomaly and Obstruction. Part I, Providence, RI: Amer. Math. Soc., 2009, vol. 46. · Zbl 1181.53002
[13] M. Gromov, ”Pseudoholomorphic curves in symplectic manifolds,” Invent. Math., vol. 82, iss. 2, pp. 307-347, 1985. · Zbl 0592.53025 · doi:10.1007/BF01388806 · eudml:143289
[14] H. Hofer, K. Wysocki, and E. Zehnder, ”A general Fredholm theory. I. A splicing-based differential geometry,” J. Eur. Math. Soc. \((\)JEMS\()\), vol. 9, iss. 4, pp. 841-876, 2007. · Zbl 1149.53053 · doi:10.4171/JEMS/99 · www.ems-ph.org
[15] M. A. Kervaire and J. W. Milnor, ”Groups of homotopy spheres. I,” Ann. of Math., vol. 77, pp. 504-537, 1963. · Zbl 0115.40505 · doi:10.2307/1970128
[16] L. Lazzarini, ”Existence of a somewhere injective pseudo-holomorphic disc,” Geom. Funct. Anal., vol. 10, iss. 4, pp. 829-862, 2000. · Zbl 1003.32004 · doi:10.1007/PL00001640
[17] D. McDuff and D. Salamon, \(J\)-Holomorphic Curves and Symplectic Topology, Providence, RI: Amer. Math. Soc., 2004, vol. 52. · Zbl 1064.53051
[18] Y. Oh, ”Fredholm theory of holomorphic discs under the perturbation of boundary conditions,” Math. Z., vol. 222, iss. 3, pp. 505-520, 1996. · Zbl 0863.53024 · doi:10.1007/PL00004544 · eudml:174898
[19] Y. Oh, ”Gromov-Floer theory and disjunction energy of compact Lagrangian embeddings,” Math. Res. Lett., vol. 4, iss. 6, pp. 895-905, 1997. · Zbl 0899.58020 · doi:10.4310/MRL.1997.v4.n6.a9
[20] Y. Oh, ”Removal of boundary singularities of pseudo-holomorphic curves with Lagrangian boundary conditions,” Comm. Pure Appl. Math., vol. 45, iss. 1, pp. 121-139, 1992. · Zbl 0743.58018 · doi:10.1002/cpa.3160450106
[21] L. Polterovich, ”Monotone Lagrange submanifolds of linear spaces and the Maslov class in cotangent bundles,” Math. Z., vol. 207, iss. 2, pp. 217-222, 1991. · Zbl 0703.58018 · doi:10.1007/BF02571385 · eudml:174266
[22] P. Seidel, ”Exact Lagrangian submanifolds in \(T^*S^n\) and the graded Kronecker quiver,” in Different Faces of Geometry, New York: Kluwer/Plenum, 2004, vol. 3, pp. 349-364. · Zbl 1070.53049 · doi:10.1007/0-306-48658-X_8
[23] P. Seidel, ”A long exact sequence for symplectic Floer cohomology,” Topology, vol. 42, iss. 5, pp. 1003-1063, 2003. · Zbl 1032.57035 · doi:10.1016/S0040-9383(02)00028-9 · arxiv:math/0105186
[24] J. Sikorav, ”Some properties of holomorphic curves in almost complex manifolds,” in Holomorphic Curves in Symplectic Geometry, Basel: Birkhäuser, 1994, vol. 117, pp. 165-189.
[25] R. O. Wells Jr., Differential Analysis on Complex Manifolds, Second ed., New York: Springer-Verlag, 2008, vol. 65. · Zbl 0435.32004
[26] G. W. Whitehead, Elements of Homotopy Theory, New York: Springer-Verlag, 1978, vol. 61. · Zbl 0406.55001
[27] D. Kwon and Y. Oh, ”Structure of the image of (pseudo)-holomorphic discs with totally real boundary condition,” Comm. Anal. Geom., vol. 8, iss. 1, pp. 31-82, 2000. · Zbl 0951.32025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.