Linearizing certain reductive group actions. (English) Zbl 0602.14047

Let \(X=Spec(A)\) be an affine (finite type) scheme over an algebraically closed characteristic zero field, and assume that the reductive algebraic group G acts on X. The main result of this paper, the normal linearization theorem, gives criteria to guarantee that X is a G-vector bundle: the necessary hypotheses are that there is a closed G-stable subscheme \(X_ 0\) of X which contains all closed orbits, which is a local complete intersection in X, and into which there is a G-equivariant retraction \(p: X\to X_ 0,\) then X is a G-vector bundle over \(X_ 0.\)
This result is applied in the case of fix pointed actions (i.e. when the projection of X to the categorical quotient X/G induces a bijection from fixed points). If the fixed points are a local complete intersection, then X is a vector bundle over X/G, and if vector bundles are trivial on X/G then X is G-isomorphic to (X/G)\(\times W\), where W is a G-module whose only closed orbit is a unique fixed point, i.e. G is one fix pointed on W. In particular, if G is one fix pointed on X and the fixed point x is regular on X then (X,x) is G-isomorphic to \((T_ x(X),0).\)
These results in turn generalize previous results of Białynicki-Birula and Panyushev which identify certain actions as conjugate to linear actions on vector spaces. The authors also indicate how their results could have applications to the Jacobian conjecture.
Reviewer: A.R.Magid


14L30 Group actions on varieties or schemes (quotients)
14L24 Geometric invariant theory
20G05 Representation theory for linear algebraic groups
Full Text: DOI


[1] Hyman Bass, Edwin H. Connell, and David Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 287 – 330. · Zbl 0539.13012
[2] A. Białynicki-Birula, Remarks on the action of an algebraic torus on \?\(^{n}\), Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 177 – 181 (English, with Russian summary).
[3] A. Białynicki-Birula, Remarks on the action of an algebraic torus on \?\(^{n}\). II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 123 – 125 (English, with Russian summary).
[4] N. Bourbaki, Éléments de mathématique. Fascicule XXVIII. Algèbre commutative. Chapitre 3: Graduations, filtra- tions et topologies. Chapitre 4: Idéaux premiers associés et décomposition primaire, Actualités Scientifiques et Industrielles, No. 1293, Hermann, Paris, 1961 (French). · Zbl 0547.13001
[5] -, Algébre commutative, Chapitres 8 et 9, Masson, Paris, 1983.
[6] A. Grothendieck, Éléments de géométrie algéebrique. IV (Seconde partie), Publ. Inst. Hautes Etude Sci. No. 24, 1965. · Zbl 0135.39701
[7] Heinrich W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161 – 174 (German). · Zbl 0027.08503 · doi:10.1515/crll.1942.184.161
[8] T. Kambayashi, Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra 60 (1979), no. 2, 439 – 451. · Zbl 0429.14017 · doi:10.1016/0021-8693(79)90092-9
[9] T. Kambayashi and P. Russell, On linearizing algebraic torus actions, J. Pure Appl. Algebra 23 (1982), no. 3, 243 – 250. · Zbl 0518.14026 · doi:10.1016/0022-4049(82)90100-1
[10] H. Kraft, Algebraic groups, invariants and representations, International Conference, Trento, Italy, 1981, pp. 1.6-6.6.
[11] Domingo Luna, Slices étales, Sur les groupes algébriques, Soc. Math. France, Paris, 1973, pp. 81 – 105. Bull. Soc. Math. France, Paris, Mémoire 33 (French). · Zbl 0286.14014
[12] M. Nagata, Lectures on the fourteenth problem of Hilbert, Tata Institute of Fundamental Research, Bombay, 1965. · Zbl 0182.54101
[13] D. I. Panyushev, Semisimple groups of automorphisms of a four-dimensional affine space, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 4, 881 – 894 (Russian).
[14] V. L. Popov, Stability of the action of an algebraic group on an algebraic variety, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 371 – 385 (Russian). · Zbl 0232.14018
[15] Daniel Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167 – 171. · Zbl 0337.13011 · doi:10.1007/BF01390008
[16] R. W. Richardson, The conjugating representation of a semisimple group, Invent. Math. 54 (1979), no. 3, 229 – 245. · Zbl 0424.20035 · doi:10.1007/BF01390231
[17] R. W. Richardson, An application of the Serre conjecture to semisimple algebraic groups, Algebra, Carbondale 1980 (Proc. Conf., Southern Illinois Univ., Carbondale, Ill., 1980) Lecture Notes in Math., vol. 848, Springer, Berlin-New York, 1981, pp. 141 – 151.
[18] Maxwell Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401 – 443. · Zbl 0073.37601 · doi:10.2307/2372523
[19] Peter Russell, On affine-ruled rational surfaces, Math. Ann. 255 (1981), no. 3, 287 – 302. · Zbl 0438.14024 · doi:10.1007/BF01450704
[20] Frank J. Servedio, Prehomogeneous vector spaces and varieties, Trans. Amer. Math. Soc. 176 (1973), 421 – 444. · Zbl 0266.20043
[21] I. R. Shafarevich, On some infinite-dimensional groups, Rend. Mat. e Appl. (5) 25 (1966), no. 1-2, 208 – 212.
[22] T. A. Springer, Invariant theory, Lecture Notes in Mathematics, Vol. 585, Springer-Verlag, Berlin-New York, 1977. · Zbl 0346.20020
[23] A. A. Suslin, Projective modules over polynomial rings are free, Dokl. Akad. Nauk SSSR 229 (1976), no. 5, 1063 – 1066 (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.