Boshernitzan, Michael A unique ergodicity of minimal symbolic flows with linear block growth. (English) Zbl 0602.28008 J. Anal. Math. 44, 77-96 (1985). Let (\(\Omega\),T) be a minimal symbolic flow over a finite alphabet. Denote by P(n) the number of different n-blocks which appear in any \(\omega \in \Omega\) (the minimality of the flow makes P(n) independent of the choice of \(\omega \in \Omega\)). Let \({\mathcal I}_ 0\) denote the set of ergodic measures of the flow \((\Omega,T)\) and let \(n({\mathcal I}_ 0)\) be its cardinality. Then the main results of the paper are contained in the following two theorems: Theorem. If for some integer \(r>1\) we have \(\liminf_{n\to +\infty}(P(n)-rn)=-\infty\) then n(\({\mathcal I}_ 0)<r.\) Theorem. If \(\limsup_{n\to \infty}(\frac{P(n)}{n})<3,\) then the flow (\(\Omega\),T) is uniquely ergodic. Reviewer: J.Šiška Cited in 7 ReviewsCited in 43 Documents MSC: 28D10 One-parameter continuous families of measure-preserving transformations Keywords:block growth; unique ergodicity; minimal symbolic flow over a finite alphabet × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Billingsley, P., Ergodic Theory and Information (1965), New York, London, Sydney: John Wiley & Sons, Inc., New York, London, Sydney · Zbl 0141.16702 [2] Cornfeld, I. P.; Fanin, S. V.; Sinai, Ya. G., Ergodic Theory (1982), Berlin, Heidelberg, New York: Springer-Verlag, Berlin, Heidelberg, New York · Zbl 0493.28007 [3] Coven, E. M., Sequences with minimal block growth, Math. Systems Theory, 8, 376-382 (1975) · Zbl 0299.54032 · doi:10.1007/BF01780584 [4] Coven, E. M.; Hedlund, G. A., Sequence with minimal block growth, Math. Systems Theory, 7, 138-153 (1973) · Zbl 0256.54028 · doi:10.1007/BF01762232 [5] Furstenberg, H., Recurrence in Ergodic Theory and Combinatorial Number Theory (1981), Princeton, New Jersey: Princeton University Press, Princeton, New Jersey · Zbl 0459.28023 [6] A. Katok,Invariant measures of flows on oriented surfaces, Dokl. Nauk. SSR211 (1973), Sov. Math. Dokl.14 (1973), 1104-1108. · Zbl 0298.28013 [7] Keane, M., Non-ergodic interval exchange transformation, Isr. J. Math., 26, 188-196 (1977) · Zbl 0351.28012 [8] Masur, H., Interval exchange transformations and measured foliations, Ann. of Math., 115, 168-200 (1982) · Zbl 0497.28012 · doi:10.2307/1971341 [9] Paul, E. M., Minimal symbolic flows having minimal block growth, Math. Systems Theory, 8, 309-315 (1975) · Zbl 0306.54056 · doi:10.1007/BF01780578 [10] Veech, W. A., Interval exchange transformations, J. Analyse Math., 33, 222-272 (1978) · Zbl 0455.28006 · doi:10.1007/BF02790174 [11] Veech, W. A., Gauss measures for transformations on the space of interval exchange maps, Ann. of Math., 115, 201-242 (1982) · Zbl 0486.28014 · doi:10.2307/1971391 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.