zbMATH — the first resource for mathematics

Keeping track of limit cycles. (English) Zbl 0602.34019
We give a solution to Hilbert’s 16th problem when an a priori bound on the period is imposed. Also, we give an upper bound on the arclength which generalizes a previous convexity statement for quadratic vector fields. We use a theorem on subanalytic sets and methods of differential analysis.

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
37G99 Local and nonlocal bifurcation theory for dynamical systems
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
32B20 Semi-analytic sets, subanalytic sets, and generalizations
Full Text: DOI
[1] Andronov, A.A, Qualitative theory of second order dynamical systems, (1973), Wiley New York, (D. Louvish, Trans.)
[2] Andronov, A.A, Theory of bifurcations of dynamical systems on a plane, (1973), Wiley New York, (D. Louvish, Trans.)
[3] Bautin, N, On the number of limit cycles appearing with variations of the coefficients from an equilibrium state of the type of a focus or a center, Mat. sb. (N.S.), 30, 72, 181-196, (1952)
[4] Bruhat; Cartan, Sur la structure des sous-ensembles analytiques réels, C. R. acad. sci. Paris, 988-990, (1957) · Zbl 0081.17201
[5] Brjuno, A.D, Analytical form of differential equations, Trans. Moscow math. soc., 25, 131-288, (1971)
[6] Camacho, C; Sad, P, Invariant varieties through singularities of holomorphic vector fields, Ann. math., 115, 579-595, (1982) · Zbl 0503.32007
[7] Dulac, H, Sur LES cycles limites, Bull. soc. math. France, 51, 45-188, (1923) · JFM 49.0304.01
[8] Ecalle, J, ()
[9] Ecalle, J, LES champs de vecteurs locaux résonnants de \(C\)^{v} classification analytique, ()
[10] Francoise, J.P, Singularités de champs isochores, Duke math. J., 47, No. 3, 465-485, (1980) · Zbl 0482.58012
[11] Francoise, J.P, Variations sur une formule de H. Poincaré, ()
[12] Gabrielov, A.M, Projections of semi-analytic sets, Functional anal. appl., 2, No. 4, 282-291, (1968) · Zbl 0179.08503
[13] Gonzales, E.A, Generic properties of polynomialvector fields at infinity, Trans. amer. math. soc., 143, 201-222, (1969)
[14] Hardt, R, Stratification of real analytic mappings and images, Invent. math., 28, 193-208, (1975) · Zbl 0298.32003
[15] Hironaka, H, Subanalytic sets, number theory, algebra, algebraic geometry, and commutative algebra in honour of Y. akitubi, (), 453-493
[16] Hironaka, H; Jalabert, M.Lejeune; Teissier, B, Platificateur et aplatissement, singularités à cargèse, Astérisque, 7-8, 1, (1973)
[17] Il’ias̆enko, Ju.S, The appearance of limit cycles under a perturbation of the equation \(dwdz = −RzRw\) where R(z, w) is a polynomial, Mat. sb. (N.S.), 78, 120, 360-373, (1969)
[18] Il’ias̆enko, Ju.S, An example of equations \(dwdz = Pn(z, w)Qn(z, w)\) having a countable number of limit cycles and arbitrarily high petrowskii-landis genus, Mat. sb. (N.S.), 80, 122, 388-404, (1969)
[19] Il’ias̆enko, Ju.S, Topology of phase portraits of analytic differential equations on complex and projective planes, (), 83-136, No. 4 · Zbl 0434.34003
[20] Il’ias̆enko, Ju.S, Singular points and limit cycles of differential equations on real and complex planes, (1982), NIVTs Akad. Nauk SSSR Pushchino, preprint · Zbl 0434.34003
[21] Il’ias̆enko, Ju.S, The finiteness problem for limit cycles of polynomial vector fields on the plane, germs of saddle resonant vector fields, and non-Hausdorff Riemann surfaces, (), Abstracts · Zbl 0434.34003
[22] Il’ias̆enko, Ju.S, Limit cycles of polynomial vector fields with nondegenerate singular points on the real plane, Functional anal. appl., 18, 199-209, (1985)
[23] Jouanolou, J.P, Equations de Pfaff algébriques, () · Zbl 0477.58002
[24] Khovanski, A, Théorème de Bezout pour LES fonctions de Liouville, Ihes no. m/81/45, (1981), preprint
[25] Landis; Petrovski, On the number of limit cycles of the equation \(dydx = P(x, y)Q(x, y)\) where P and Q are polynomials of second degree, Mat. sb. (N.S.), 37, 79, 209-250, (1955)
[26] Lojasiewicz, S, Triangulation of semi-analytic sets, Ann. scuola norm. sup., Pisa, 18, 449-474, (1967) · Zbl 0128.17101
[27] {\scJ. Martinet and J.P. Ramis}, Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math. IHES, No. 55, 63-164. · Zbl 0546.58038
[28] {\scPaterlini and J. Sotomayor}, Quadratic vector fields with finitely many periodic orbits, in “Geometric Dynamics” (J. Paris, Jr., Ed.), pp. 753-766, Lecture Notes in Mathematics, Vol. 1007, Springer-Verlag, Berlin/New York.
[29] Poincaré, H, Mémoire sur LES courbes définies par une équation différentielle, J. de math., 7, 375-422, (1881) · JFM 13.0591.01
[30] Pugh, C.C, Hilbert’s 16th problem, (), 55-57
[31] Seidenberg, A, Reduction of singularities of the differential equation ady = bdx, Amer. J. math., 90, No. 1, 248-269, (1968) · Zbl 0159.33303
[32] Sotomayor, J, Curvas definidas por equações differenciais no plano, ()
[33] Teissier, B, Sur trois questions de finitude en géométrie analytique reélle, appendix of the article by F. treves, on the local solvability and the local integrability of systems of vector fields, Acta math., 151, 1-48, (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.