Marsden, Jerrold E.; Ratiu, Tudor Reduction of Poisson manifolds. (English) Zbl 0602.58016 Lett. Math. Phys. 11, 161-169 (1986). The authors introduce the notion of reduction in the category of Poisson manifolds. It is provided that a Poisson context is general enough to include the usual results on reduction of symplectic manifolds, Dirac brackets and the Lie-Poisson bracket. The functionality property of Poisson reduction is given. The dynamic counterpart of the Poisson reduction theorem is studied. Some examples such as the Poisson reduction used by Arnol’d in passing from material to spatial coordinates in fluid dynamics and by Marsden and Weinstein for Vlasov equation, and the example closely related to the Hamiltonian structures used for the description of a particle in Yang- Mills field which gives an easy proof of the Adler-Kostant-Symes theorem, are regarded. Reviewer: H.Kilp Cited in 10 ReviewsCited in 108 Documents MSC: 53D20 Momentum maps; symplectic reduction 53D17 Poisson manifolds; Poisson groupoids and algebroids 70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics 70S15 Yang-Mills and other gauge theories in mechanics of particles and systems Keywords:reduction in the category of Poisson manifolds; Dirac brackets; Lie- Poisson bracket; Poisson reduction; Yang-Mills field; Adler-Kostant-Symes theorem PDF BibTeX XML Cite \textit{J. E. Marsden} and \textit{T. Ratiu}, Lett. Math. Phys. 11, 161--169 (1986; Zbl 0602.58016) Full Text: DOI References: [1] Abraham, R. and Marsden, J., Foundations of Mechanics, 2nd edn., Addison-Wesley, 1978. · Zbl 0393.70001 [2] ArmsJ., MarsdenJ., and MoncriefV., Commun. Math. Phys. 78, 455-478 (1981). · Zbl 0486.58008 [3] ArnoldV., Ann. Inst. Fourier, Grenoble 16, 319-361 (1966). [4] ArnoldV., Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1978. [5] BayenF., FlatoM., FronsdalC., LichnerowiczA., and SternheimerD., Ann. Phys. 111, 61, 1978. · Zbl 0377.53024 [6] ChernoffP. and MarsdenJ., Properties of Infinite Dimensional Hamiltonian Systems, Springer Lecture Notes in Mathematics 425, Springer-Verlag, New York, 1974. [7] CushmanR. and RodD. L., Physica D 6, 105-112 (1982). · Zbl 1194.37125 [8] DepritA., Celestial Mech. 30, 181-195 (1983). · Zbl 0623.70010 [9] Dirac, P. A. M., Lectures on Quantum Mechanics, Belfer Grad. School of Sci., Monograph Series, Vol. 2, Yeshiva University (1964). · Zbl 0141.44603 [10] FlatoM., LichernowiczA., and SternheimerD., J. Math. Phys. 17, 17-54 (1976). [11] GuilleminV. and SternbergS., Invent. Math. 67, 515-538 (1982). · Zbl 0503.58018 [12] Guillemin, V. and Sternberg, S., Symplectic Techniques in Physics, Cambridge University Press, 1984. · Zbl 0576.58012 [13] IwaiT., J. Math. Phys. 23, 1088-1092 (1982). · Zbl 0494.58020 [14] IwaiT., J. Math. Phys. 26, 885-893 (1985). · Zbl 0604.70041 [15] KazhdanD., KostantB., and SternbergS., Commun. Pure Appl. Math. 31, 481-508 (1978). · Zbl 0368.58008 [16] KirillovA. A., Russian Math. Surveys 31, 55-75 (1976). · Zbl 0357.58003 [17] KostantB., Quantization and Unitary Representations, Lecture Notes in Mathematics 170, Springer-Verlag, New York, 1970. [18] Krishnaprasad, P. S. and Marsden, J., Hamiltonian Structures and Stability for Rigid Bodies With Flexible Attachments, Arch. Rat. Mech. An. (to appear). · Zbl 0624.58010 [19] KummerM., Indiana Univ. Math. J. 30, 281-291 (1981). · Zbl 0461.70008 [20] LichnerowiczA., J. Diff. Geom. 12, 253-300 (1977). [21] MarleG. M., ?Symplectic Manifolds, Dynamical Groups and Hamiltonian Mechanics?, in M.Cahen and M.Flato (eds.), Differential Geometry and Relativity, D. Reidel, Dordrecht, 1976. [22] Marsden, J., Lectures on Geometric Methods in Mathematical Physics, CBMS-NSF Regional Conference Series #37, SIAM, 1981. [23] MarsdenJ., RatiuR., and WeinsteinA., Trans. Am. Math. Soc. 281, 141-177 (1984). [24] MarsdenJ. and WeinsteinA., Rep. Math. Phys. 5, 121-130 (1974). · Zbl 0327.58005 [25] MarsdenJ. and WeinsteinA., Physica D 4, 394-405 (1982). · Zbl 1194.35463 [26] MarsdenJ. and WeinsteinA., Physica D 7, 305-323 (1983). [27] Marsden, J., Weinstein, A., Ratiu, T., Schmid, R., and Spencer, R. G., Proc. IUTAM-ISIMM Symposium on ?Modern Developments in Analytical Mechanical?, Torino, June 7-11, 1982, Atti della Academia della Scienze di Torino 117, 289-340 (1983). [28] Meyer, K. R., ?Symmetries and Integrals in Mechanics?, in Dynamical Systems, Academic Press, 1973, pp. 259-273. · Zbl 0293.58009 [29] MishchenkoA. S. and FomenkoA. T., Funct. Anal. Appl. 12, 113-131 (1978) and Math. USSR Izvestia 12, 371-389 (1978). · Zbl 0405.58028 [30] MontgomeryR., Lett. Math. Phys. 8, 59-67 (1984). · Zbl 0562.53062 [31] MontgomeryR., MarsdenJ., and RatiuT., Cont. Math. AMS 28, 101-114 (1984). [32] Nehoroshev, N., Trud. Mosk. Math. 26, 1972. [33] RatiuT., Involution Theorems in Springer Lecture Notes in Mathematics 775, Springer-Verlag, New York, 1980. [34] SmaleS., Inv. Math. 10, 205-331; 11, 45-64 (1970). · Zbl 0202.23201 [35] SniatyckiJ., Ann. Inst. H. Poincaré 20, 365-372 (1974). [36] SouriauJ. M., Structures des Systèmes Dynamiques, Dunod, Paris, 1970. [37] SternbergS., Proc. Nat. Acad. Sci. 74, 5253-5254 (1977). · Zbl 0765.58010 [38] TulczyjewW. M., ?Poisson Reductions?, in J-P.Dufour (ed.), Singularités feuilletages et mécanique hamiltonienne, Hermann, Paris, 1985. [39] WeinsteinA., Adv. Math. 6, 329-346 (1971). · Zbl 0213.48203 [40] WeinsteinA., Lett. Math. Phys. 2, 417-420 (1978). · Zbl 0388.58010 [41] Woodhouse, N., Geometric Quantization, Oxford University Press, 1980. · Zbl 0458.58003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.