Bost, Jean-Benoît Tores invariants des systèmes dynamiques Hamiltoniens (d’après Kolmogorov, Arnol’d, Moser, Rüssmann, Zehnder, Herman, Pöschel,…). (Invariant tori of Hamiltonian dynamical systems). (French) Zbl 0602.58021 Sémin. Bourbaki, 37e année, Vol. 1984/85, Exp. No. 639, Astérisque 133/134, 113-157 (1986). [For the entire collection see Zbl 0577.00004.] Author’s introduction, excerpted and paraphrased: This is an introduction to the theory of Kolmogorov-Arnol’d-Moser concerning quasiperiodic orbits in dynamical systems and their perturbations. Above all we treat the theorem of Kolmogorov-Arnol’d-Moser about Hamiltonian systems - the theorem of invariant tori, i.e. a Hamiltonian system close to a completely integrable system has many invariant Lagrangian tori. A corollary is that a generic Hamiltonian system is not ergodic. First, we survey Kolmogorov-Arnol’d-Moser theory. Next, we establish an implicit function theorem (following R. S. Hamilton) in Fréchet space of \(C^{\infty}\) functions. Finally we use this theorem to prove (following Herman) a version of the theorem of invariant tori. Reviewer: W.Reddy Cited in 8 Documents MSC: 37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems 37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion Keywords:theory of Kolmogorov-Arnol’d-Moser; implicit function theorem Citations:Zbl 0577.00004 PDF BibTeX XML Full Text: Numdam EuDML