Bost, Jean-Benoît Invariant tori of Hamiltonian dynamical systems [after Kolmogorov, Arnol’d, Moser, Rüssmann, Zehnder, Herman, Pöschel,…]. (Tores invariants des systèmes dynamiques Hamiltoniens (d’après Kolmogorov, Arnol’d, Moser, Rüssmann, Zehnder, Herman, Pöschel,…].) (French) Zbl 0602.58021 Sémin. Bourbaki, 37e année, Vol. 1984/85, Exp. No. 639, Astérisque 133/134, 113-157 (1986). Author’s introduction, excerpted and paraphrased: This is an introduction to the theory of Kolmogorov-Arnol’d-Moser concerning quasiperiodic orbits in dynamical systems and their perturbations. Above all we treat the theorem of Kolmogorov-Arnol’d-Moser about Hamiltonian systems – the theorem of invariant tori, i.e. a Hamiltonian system close to a completely integrable system has many invariant Lagrangian tori. A corollary is that a generic Hamiltonian system is not ergodic. First, we survey Kolmogorov-Arnol’d-Moser theory. Next, we establish an implicit function theorem (following R. S. Hamilton) in Fréchet space of \(C^{\infty}\) functions. Finally we use this theorem to prove (following Herman) a version of the theorem of invariant tori.[For the entire collection see Zbl 0577.00004.] Reviewer: W. Reddy Cited in 21 Documents MSC: 37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion 70H08 Nearly integrable Hamiltonian systems, KAM theory Keywords:Kolmogorov-Arnol’d-Moser theory; implicit function theorem; KAM theory Citations:Zbl 0577.00004 × Cite Format Result Cite Review PDF Full Text: Numdam EuDML