##
**The split common fixed point problem for total asymptotically strictly pseudocontractive mappings.**
*(English)*
Zbl 1295.47076

Summary: The purpose of this paper is to propose an algorithm for solving the split common fixed point problems for total asymptotically strictly pseudocontractive mappings in infinite-dimensional Hilbert spaces. The results presented in the paper improve and extend some recent results of Moudafi (2011 and 2010), Xu (2010 and 2006), Censor and Segal (2009), Censor et al. (2005), Masad and Reich (2007), Censor et al. (2007), Yang (2004), and others.

### MSC:

47J25 | Iterative procedures involving nonlinear operators |

47H09 | Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc. |

PDF
BibTeX
XML
Cite

\textit{S. S. Chang} et al., J. Appl. Math. 2012, Article ID 385638, 13 p. (2012; Zbl 1295.47076)

Full Text:
DOI

### References:

[1] | Y. Censor and T. Elfving, “A multiprojection algorithm using Bregman projections in a product space,” Numerical Algorithms, vol. 8, no. 2-4, pp. 221-239, 1994. · Zbl 0828.65065 |

[2] | C. Byrne, “Iterative oblique projection onto convex sets and the split feasibility problem,” Inverse Problems, vol. 18, no. 2, pp. 441-453, 2002. · Zbl 0996.65048 |

[3] | Y. Censor, T. Bortfeld, B. Martin, and A. Trofimov, “A unified approach for inversion problem in intensity-modulated radiation therapy,” Physics in Medicine & Biology, vol. 51, pp. 2353-2365, 2006. |

[4] | Y. Censor, T. Elfving, N. Kopf, and T. Bortfeld, “The multiple-sets split feasibility problem and its applications for inverse problems,” Inverse Problems, vol. 21, no. 6, pp. 2071-2084, 2005. · Zbl 1089.65046 |

[5] | Y. Censor, A. Motova, and A. Segal, “Perturbed projections and subgradient projections for the multiple-sets split feasibility problem,” Journal of Mathematical Analysis and Applications, vol. 327, no. 2, pp. 1244-1256, 2007. · Zbl 1253.90211 |

[6] | H.-K. Xu, “A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem,” Inverse Problems, vol. 22, no. 6, pp. 2021-2034, 2006. · Zbl 1126.47057 |

[7] | Q. Yang, “The relaxed CQ algorithm solving the split feasibility problem,” Inverse Problems, vol. 20, no. 4, pp. 1261-1266, 2004. · Zbl 1066.65047 |

[8] | J. Zhao and Q. Yang, “Several solution methods for the split feasibility problem,” Inverse Problems, vol. 21, no. 5, pp. 1791-1799, 2005. · Zbl 1080.65035 |

[9] | A. Moudafi, “The split common fixed-point problem for demicontractive mappings,” Inverse Problems, vol. 26, no. 5, p. 055007, 2010. · Zbl 1219.90185 |

[10] | A. Moudafi, “A note on the split common fixed-point problem for quasi-nonexpansive operators,” Nonlinear Analysis, vol. 74, no. 12, pp. 4083-4087, 2011. · Zbl 1232.49017 |

[11] | K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, “Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space,” Nonlinear Analysis, vol. 67, no. 8, pp. 2350-2360, 2007. · Zbl 1130.47045 |

[12] | C. Martinez-Yanes and H.-K. Xu, “Strong convergence of the CQ method for fixed point iteration processes,” Nonlinear Analysis, vol. 64, no. 11, pp. 2400-2411, 2006. · Zbl 1105.47060 |

[13] | H. K. Xu, “Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces,” Inverse Problems, vol. 26, no. 10, pp. 105018-17, 2010. · Zbl 1213.65085 |

[14] | Y. Censor and A. Segal, “The split common fixed point problem for directed operators,” Journal of Convex Analysis, vol. 16, no. 2, pp. 587-600, 2009. · Zbl 1189.65111 |

[15] | E. Masad and S. Reich, “A note on the multiple-set split convex feasibility problem in Hilbert space,” Journal of Nonlinear and Convex Analysis, vol. 8, no. 3, pp. 367-371, 2007. · Zbl 1171.90009 |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.