×

zbMATH — the first resource for mathematics

Topological applications of graded Frobenius \(n\)-homomorphisms. (English. Russian original) Zbl 1254.54030
Trans. Mosc. Math. Soc. 2011, No. 1, 97-142 (2011); translation from Tr. Mosk. Mat. O.-va 2011, 46 p. (2011).
This paper is divided into three parts. In the first part the author generalizes the work of V. M. Buchstaber and E. G. Rees on Frobenius \(n\)-homomorphisms to the case of graded algebras. In the second part the author applies the new algebraic technique of Frobenius \(n\)-homomorphisms to find estimates on the cohomological length of the base and the total space of a wide class of branched coverings of topological spaces, called the Smith-Dold branched coverings. This class of branched coverings contains, in particular, unbranched finite sheeted coverings and the usual finite sheeted branched coverings from the theory of smooth manifolds. In the third part the author attacks a problem concerning the description of the cohomology of \(n\)-valued topological groups. The main tool there is a generalization of the notion of a graded Hopf algebra, based on the notion of a graded Frobenius \(n\)-homomorphism.

MSC:
54C40 Algebraic properties of function spaces in general topology
17A42 Other \(n\)-ary compositions \((n \ge 3)\)
57M12 Low-dimensional topology of special (e.g., branched) coverings
Full Text: DOI
References:
[1] James W. Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920), no. 8, 370 – 372. · JFM 47.0529.02
[2] Israel Berstein and Allan L. Edmonds, The degree and branch set of a branced covering, Invent. Math. 45 (1978), no. 3, 213 – 220. · Zbl 0359.55003 · doi:10.1007/BF01403169 · doi.org
[3] Glen E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 46. · Zbl 0246.57017
[4] Glen E. Bredon, Sheaf theory, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1967. · Zbl 0158.20505
[5] Victor M. Buchstaber, \?-valued groups: theory and applications, Mosc. Math. J. 6 (2006), no. 1, 57 – 84, 221 (English, with English and Russian summaries). · Zbl 1129.20045
[6] V. M. Bukhshtaber, Functional equations that are associated with addition theorems for elliptic functions, and two-valued algebraic groups, Uspekhi Mat. Nauk 45 (1990), no. 3(273), 185 – 186 (Russian); English transl., Russian Math. Surveys 45 (1990), no. 3, 213 – 215. · Zbl 0724.39005 · doi:10.1070/RM1990v045n03ABEH002361 · doi.org
[7] V. M. Buhštaber and S. P. Novikov, Formal groups, power systems and Adams operators, Mat. Sb. (N.S.) 84(126) (1971), 81 – 118 (Russian). · Zbl 0222.55008
[8] V. M. Buchstaber and E. G. Rees, Frobenius \?-homomorphisms, transfers and branched coverings, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 1 – 12. · Zbl 1152.46017 · doi:10.1017/S0305004107000539 · doi.org
[9] V. M. Bukhshtaber and E. G. Ris, Rings of continuous functions, symmetric products, and Frobenius algebras, Uspekhi Mat. Nauk 59 (2004), no. 1(355), 125 – 144 (Russian, with Russian summary); English transl., Russian Math. Surveys 59 (2004), no. 1, 125 – 145. · Zbl 1065.54007 · doi:10.1070/RM2004v059n01ABEH000704 · doi.org
[10] V. M. Buchstaber and E. G. Rees, The Gelfand map and symmetric products, Selecta Math. (N.S.) 8 (2002), no. 4, 523 – 535. · Zbl 1015.05092 · doi:10.1007/PL00012597 · doi.org
[11] V. M. Bukhshtaber and È. G. Ris, A constructive proof of the generalized Gel\(^{\prime}\)fand isomorphism, Funktsional. Anal. i Prilozhen. 35 (2001), no. 4, 20 – 25, 95 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 35 (2001), no. 4, 257 – 260. · Zbl 0993.54018 · doi:10.1023/A:1013170322564 · doi.org
[12] V. M. Buchstaber and E. G. Rees, Multivalued groups, \?-Hopf algebras and \?-ring homomorphisms, Lie groups and Lie algebras, Math. Appl., vol. 433, Kluwer Acad. Publ., Dordrecht, 1998, pp. 85 – 107. · Zbl 0903.20039
[13] V. M. Buchstaber and E. G. Rees, Multivalued groups, their representations and Hopf algebras, Transform. Groups 2 (1997), no. 4, 325 – 349. · Zbl 0891.20044 · doi:10.1007/BF01234539 · doi.org
[14] V. M. Bukhshtaber and E. G. Ris, Multivalued groups and Hopf \?-algebras, Uspekhi Mat. Nauk 51 (1996), no. 4(310), 149 – 150 (Russian); English transl., Russian Math. Surveys 51 (1996), no. 4, 727 – 729. · Zbl 0879.20042 · doi:10.1070/RM1996v051n04ABEH002976 · doi.org
[15] V. M. Buchstaber and A. P. Veselov, Integrable correspondences and algebraic representations of multivalued groups, Internat. Math. Res. Notices 8 (1996), 381 – 400. · Zbl 0885.58018 · doi:10.1155/S1073792896000256 · doi.org
[16] A. V. Černavskiĭ, Finite-to-one open mappings of manifolds, Mat. Sb. (N.S.) 65 (107) (1964), 357 – 369 (Russian). · Zbl 0129.15003
[17] Albrecht Dold, Ramified coverings, orbit projections and symmetric powers, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 1, 65 – 72. · Zbl 0592.55011 · doi:10.1017/S0305004100063933 · doi.org
[18] A. Dold, Lectures on algebraic topology, Springer-Verlag, New York-Berlin, 1972 (German). Die Grundlehren der mathematischen Wissenschaften, Band 200. · Zbl 0234.55001
[19] Albrecht Dold, Homology of symmetric products and other functors of complexes, Ann. of Math. (2) 68 (1958), 54 – 80. · Zbl 0082.37701 · doi:10.2307/1970043 · doi.org
[20] Vladimir Dragović, Geometrization and generalization of the Kowalevski top, Comm. Math. Phys. 298 (2010), no. 1, 37 – 64. · Zbl 1252.14021 · doi:10.1007/s00220-010-1066-z · doi.org
[21] Ryszard Engelking, Topologia ogólna, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Biblioteka Matematyczna. Tom 47. [Mathematics Library. Vol. 47]. Ryszard Engelking, General topology, PWN — Polish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author; Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60].
[22] G. Frobenius, Über Gruppencharaktere, Sitzungsber. Preuß. Akad. Wiss. Berlin 1896, 985-1021. · JFM 27.0092.01
[23] G. Frobenius, Über die Primfaktoren der Gruppendeterminante, Sitzungsber. Preuß. Akad. Wiss. Berlin 1896, 1343-1382. · JFM 27.0094.01
[24] D. V. Gugnin, Polynomially dependent homomorphisms and Frobenius \?-homomorphisms, Tr. Mat. Inst. Steklova 266 (2009), no. Geometriya, Topologiya i Matematicheskaya Fizika. II, 64 – 96 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 266 (2009), no. 1, 59 – 90. · Zbl 1182.16034 · doi:10.1134/S0081543809030043 · doi.org
[25] K. Kuratowski, Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. · Zbl 0158.40901
[26] Raghavan Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Mathematics, No. 25, Springer-Verlag, Berlin-New York, 1966.
[27] T. E. Panov, On the structure of the 2-Hopf algebra in the cohomology of four-dimensional manifolds, Uspekhi Mat. Nauk 51 (1996), no. 1(307), 161 – 162 (Russian); English transl., Russian Math. Surveys 51 (1996), no. 1, 155 – 157. · Zbl 0874.57031 · doi:10.1070/RM1996v051n01ABEH002759 · doi.org
[28] Larry Smith, Transfer and ramified coverings, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 3, 485 – 493. · Zbl 0525.57031 · doi:10.1017/S0305004100060795 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.