# zbMATH — the first resource for mathematics

Varieties with small dual varieties. I. (English) Zbl 0603.14025
Let $$X\subset {\mathbb{P}}^ N$$ be a projective complex manifold of dimension n, and let $$X^*\subset {\mathbb{P}}^{N*}$$, dim $$X^*=n^*$$ be the dual variety formed by the points corresponding to the tangent hyperplanes. As a rule, $$n^*=N-1$$, i.e. def X$$=N-n^*-1=0$$. The paper under review is devoted to varieties X for which def X$$>0$$. The reviewer has shown that for all $$(smooth)\quad X: n^*\geq n.$$ The main purpose of the present paper is to classify varieties for which $$n^*=n$$ under the assumption that $$n\leq 2N/3$$ (we recall that from Hartshorne’s conjecture it follows that, for $$n>2N/3,\quad def X=0).$$
The main auxiliary result having also many other applications consists in a description of the structure of the normal bundle $$N_{L/X}$$, where L is a linear subspace of dimension def X along which a generic hyperplane from $$X^*$$ is tangent to X (this description also yields some old results, e.g. the reviewer’s theorem to the effect that def $$X\leq n-2$$ and Landman’s theorem according to which def $$X\equiv n (mod 2)$$ if $$n^*<N-1)$$. The author’s study based, besides the above results, on the Bejlinson spectral sequence shows that the only varieties for which $$n\leq 2N/3$$, $$n^*=n$$ are the hypersurfaces, the Segre varieties $${\mathbb{P}}^ 1\times {\mathbb{P}}^{n-1}\subset {\mathbb{P}}^{2n-1}$$, $$n\geq 3$$, the Grassmann variety $$G(4,1)^ 6\subset {\mathbb{P}}^ 9$$, and the spinor variety $$S^{10}\subset {\mathbb{P}}^{15}$$ (all these varieties, with the exception of hypersurfaces of degree greater $$than^ 2,$$ are self-dual, i.e. $$X^*=X).$$
[See also part II of this paper, reviewed below.]
Reviewer: F.L.Zak

##### MSC:
 14J40 $$n$$-folds ($$n>4$$) 14N05 Projective techniques in algebraic geometry 14M07 Low codimension problems in algebraic geometry
Full Text:
##### References:
  Ballico, E., Chiantini, L.: On smooth subcanonical varieties of codimension 2? n?4 (To appear in Ann. Mat. Pure Appl.) · Zbl 0549.14015  Barth, W.: Transplanting cohomology class in complex projective space. Am. J. Math.92, 951-961 (1970) · Zbl 0206.50001 · doi:10.2307/2373404  Ein, L.: Stable vector bundle on projective space in charp>0. Math. Ann.254, 53-72 (1980) · Zbl 0437.14007 · doi:10.1007/BF01457885  Ein, L.: Varieties with small dual varieties II. (preprint) · Zbl 0603.14026  Elencwajg, G., Hirschowitz, A., Schneider, M.: Les fibres uniformes de rang au plusn sur? n (?). Proceedings of the Nice Conference 1979 on Vector bundles and Differential equations · Zbl 0456.32009  Fulton, W., Lazarsfeld, R.: Connectivity and its applications in algebraic geometry, Lect. Notes Math.862, 26-92 (1981) · Zbl 0484.14005 · doi:10.1007/BFb0090889  Fujita, T.: On the structure of polarized manifolds with total deficiency one I. J. Math. Soc. Jpn32-4, 709-775 (1980) · Zbl 0474.14017 · doi:10.2969/jmsj/03240709  Fujita, T.: On the structure of polarized manifolds with total deficiency one II. J. Math. Soc. Jpn.33-3, 415-434 (1981) · Zbl 0474.14018 · doi:10.2969/jmsj/03330415  Fujita, T., Roberts, J.: Varieties with small secant varieties: the extremal case. Am. J. Math.103, 953-976 (1981) · Zbl 0475.14046 · doi:10.2307/2374254  Griffiths, P., Harris, J.: Algebraic geometry and local differential geometry. Ann. Sci. Ec. Norm. Super.12, 355-432 (1979) · Zbl 0426.14019  Hartshorne, R.: Varieties of low codimension in projective space. Bull. Am. Math. Soc.80, 1017-1032 (1974) · Zbl 0304.14005 · doi:10.1090/S0002-9904-1974-13612-8  Hartshorne, R.: Algebraic geometry. Graduate Text in Mathematics, vol. 52. Berlin-Heidelberg-New York: Springer 1977 · Zbl 0367.14001  Hefez, A., Kleiman, S.: Notes on duality for projective varieties (to appear) · Zbl 0579.14047  Ionescu, P.: An enumeration of all smooth projective varieties of degree 5 and 6. Increst Preprint Series Math.74 (1981)  Kleiman, S.: About the conormal scheme (to appear) · Zbl 0547.14031  Kleiman, S.: Plane forms and multiple point formulas (to appear) · Zbl 0492.14044  Kleiman, S.: The enumerative theory of singularities. In: Holme, P. (ed.): Real and complex singularities. Oslo 1976, pp. 297-396. Sijtoff and Noordhoof 1977  Kobayashi, S., Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ.13-1, 31-47 (1973) · Zbl 0261.32013  Lazarsfeld, R., Van de Ven, A.: Recent work of F.L. Zak (appeared in DMV-seminar)  Lamothe, K.: The topology of complex projective varieties after S. Lefschetz. Topology20, 15-51 (1980) · Zbl 0445.14010 · doi:10.1016/0040-9383(81)90013-6  Mori, S.: Projective manifolds with ample tangent bundles. Ann. Math.110, 593-606 (1979) · Zbl 0423.14006 · doi:10.2307/1971241  Mumford, D.: Some footnote of the work of C.P. Ramanujam. In: Ramanujam, C.P.: A Tribute, pp. 247-262. Berlin-Heidelberg-New York: Springer 1978  Okonek, C., Spindler, H., Schneider, M.: Vector bundles on complex projective space. Prog. Math.3, Basel, Boston: Birkhäuser (1980) · Zbl 0438.32016  Ramanajam, C.P.: Remarks on the Kodaira vanishing theorem. J. Indian Math. Soc.36, 41-51 (1972) · Zbl 0276.32018  Room, T.: A Synthesis of Clifford matrices and its generalization. Am. J. Math.74, 967-984 (1952) · Zbl 0046.24201 · doi:10.2307/2372238  Sommese, A.J.: Hyperplane section of projection surface I-the adjunction mapping. Duke Math. J.46, 377-401 (1979) · Zbl 0415.14019 · doi:10.1215/S0012-7094-79-04616-7  Van de Ven, A.: On the 2-connectedness of the very ample divisor on a surface. Duke Math. J.46, 403-407 (1979) · Zbl 0458.14003 · doi:10.1215/S0012-7094-79-04617-9  Zak, F.: Projection of algebraic varieties. Math. U.S.S.R. Sbornik,44, 535-544 (1983) · Zbl 0511.14026 · doi:10.1070/SM1983v044n04ABEH000986  Zak, F.: Varieties of small codimension arising from group action. Addendum of ?Recent work of F.L. Zak? (to appear)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.