Ali, S. Twareque; Prugovečki, Eduard Mathematical problems of stochastic quantum mechanics: Harmonic analysis on phase space and quantum geometry. (English) Zbl 0603.22010 Acta Appl. Math. 6, 1-18 (1986). The authors review in this paper the main problems and results of functional analysis and representation theory of locally compact groups which are relevant to their program of stochastic quantum mechanics and quantum spacetime [the second author, Stochastic quantum mechanics and quantum spacetime (1984; Zbl 0536.60100); the first author, Riv. Nuovo Cim. 8, No.11, 1-128 (1985)]. They consider positive-operator-valued measures and stress the role of these measures in providing, via systems of covariance, generalizations of Mackey’s imprimitivity theorem [the reviewer, Comment. Math. Helv. 54, 629-641 (1979; Zbl 0425.22010); the first author, Can. Math. Bull. 27, 390-397 (1984; Zbl 0596.22003)] as well as their connection with reproducing kernel Hilbert spaces [the reviewer, J. Math. Phys. 23, 659- 664 (1982)]. Moreover, they show how systems of covariance are central in the fibre bundle formulation of quantum geometries [the second author, Nuovo Cim. A 89, 105-125 (1985)]. Reviewer: U.Cattaneo Cited in 2 ReviewsCited in 9 Documents MSC: 22E70 Applications of Lie groups to the sciences; explicit representations 83A05 Special relativity 81T60 Supersymmetric field theories in quantum mechanics Keywords:kinematical groups; harmonic analysis; POV measure; phase space representation; review; systems of covariance; reproducing kernel Hilbert spaces; quantum geometries Citations:Zbl 0603.22011; Zbl 0603.22012; Zbl 0536.60100; Zbl 0425.22010; Zbl 0596.22003 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Prugovečki, E.: Stochastic Quantum Mechanics and Quantum Spacetime, D. Reidel, Dordrecht, 1984. [2] Ali, S. T.: Riv. Nuovo Cim. 11, No. 8 (1985), 1. · doi:10.1007/BF02724482 [3] Davies, E. B. and Lewis, J. T.: Commun. Math. Phys. 17 (1970), 239. · Zbl 0194.58304 · doi:10.1007/BF01647093 [4] Davies, E. B.: Quantum Theory of Open Systems, Academic Press, London, 1976. · Zbl 0388.46044 [5] Ludwig, G.: Foundations of Quantum Mechanics I, Springer, Berlin, 1983. · Zbl 0509.46057 [6] Prugovečki, E.: Found. Phys. 4 (1974), 9. · doi:10.1007/BF00708550 [7] Ali, S. T. and Emch, G. G.: J. Math. Phys. 15 (1974), 176. · doi:10.1063/1.1666616 [8] Davies, E. B.: J. Funct. Anal. 6 (1970), 318. · Zbl 0198.59901 · doi:10.1016/0022-1236(70)90064-9 [9] Neumann, H.: Helv. Phys. Acta 45 (1972), 811. [10] Mackey, G. W.: Proc. Nat. Acad. Sci. (U.S.A.) 35 (1949), 537. · Zbl 0035.06901 · doi:10.1073/pnas.35.9.537 [11] Takesaki, M.: Acta Math. 119 (1967), 273. · Zbl 0163.36802 · doi:10.1007/BF02392085 [12] Naimark, M. A.: Dokl. Acad. Sci. U.S.S.R. 41 (1943), 359. [13] Riesz, F. and Sz.-Nagy, B.: Functional Analysis: Appendix, Frederick Ungar, New York, 1960. [14] Scutaru, H.: Lett. Math. Phys. 2, (1977), 101. · Zbl 0395.22009 · doi:10.1007/BF00398574 [15] Cattaneo, U.: Comment. Math. Helv. 54 (1979), 629. · Zbl 0425.22010 · doi:10.1007/BF02566297 [16] Castrigiano, D. P. L. and Henrichs, R. W.: Lett. Math. Phys. 4 (1980), 169. · Zbl 0445.22021 · doi:10.1007/BF00316670 [17] Ali, S. T.: Lecture Notes in Math. 905 (1982), 207. · doi:10.1007/BFb0092439 [18] Ali, S. T.: Can. Math. Bull. 27 (1984), 390. · Zbl 0596.22003 · doi:10.4153/CMB-1984-060-6 [19] Ali, S. T. and Prugovečki, E.: J. Math. Phys. 18 (1977), 219. · Zbl 0364.46055 · doi:10.1063/1.523259 [20] Prugovečki, E.: J. Math. Phys. 19 (1978), 2260, 2271. · doi:10.1063/1.523602 [21] Castrigiano, D. P. L.: Lett. Math. Phys. 5 (1981), 303. · Zbl 0474.22013 · doi:10.1007/BF00401478 [22] Ali, S. T.: J. Math. Phys. 21 (1980), 818. · Zbl 0487.22016 · doi:10.1063/1.524461 [23] Aronszajn, N.: Proc. Camb. Phil. Soc. 39 (1944), 133. · doi:10.1017/S0305004100017813 [24] Aronszajn, N.: Trans. Amer. Math. Soc. 68 (1950), 337. · doi:10.1090/S0002-9947-1950-0051437-7 [25] Cattaneo, U.: J. Math. Phys. 23 (1982), 659. · doi:10.1063/1.525413 [26] Ali, S. T.: ’Harmonic Analysis on Phase Space. I. Reproducing Kernel Hilbert Spaces, POV Measures and Systems of Covariance’, Concordia University preprint. [27] Ali, S. T.: ’Extended Harmonic Analysis on Phase Space and Systems of Covariance’, Hadronic J. 8 (1985), (in press). · Zbl 0591.22009 [28] Yaffe, L. G.: Rev. Mod. Phys. 54 (1982), 407. · doi:10.1103/RevModPhys.54.407 [29] Nikolov, B. A. and Trifonov, D. A.: Dubna Preprint, JINR, E2-81-797 (1981). [30] Glauber, R. J.: Phys. Rev. 131 (1963), 2766. · Zbl 1371.81166 · doi:10.1103/PhysRev.131.2766 [31] Barut, A. O. and Girardello, L.: Commun. Math. Phys. 21 (1971), 41. · Zbl 0214.38203 · doi:10.1007/BF01646483 [32] Perelomov, A. M.: Commun. Math. Phys. 26 (1972), 222. · Zbl 0243.22016 · doi:10.1007/BF01645091 [33] Dixmier, J.: Les C *-algebres et leurs representations, Gauthier-Villars, Paris, 1969. · Zbl 0174.18601 [34] Werner, R.: J. Math. Phys. 25 (1984), 1404. · Zbl 0557.43003 · doi:10.1063/1.526310 [35] Daubechies, I.: J. Math. Phys. 21 (1980), 1377. · Zbl 0453.22012 · doi:10.1063/1.524562 [36] Emch, G. G.: Int. J. Theor. Phys. 20 (1981), 891. · Zbl 0482.58014 · doi:10.1007/BF00670552 [37] Schroeck, F. E.Jr.: J. Math. Phys. 26 (1985), 306. · doi:10.1063/1.526659 [38] Ali, S. T. and Emch, G. G.: ’Geometric Quantization: Modular Reduction Theory and Coherent States’, Göttingen University preprint. · Zbl 0615.58009 [39] Giovannini, N. and Piron, C.: Helv. Phys. Acta 52 (1979), 518. [40] Giovannini, N.: J. Math. Phys. D22 (1981), 2389. · doi:10.1063/1.524821 [41] Ali, S. T. and Giovannini, N.: Helv. Phys. Acta 56 (1983), 1140. [42] Prugovečki, E.: Nuovo Cim. A 89 (1985), 105. · doi:10.1007/BF02804854 [43] Ali, S. T. and Prugovečki, E.: Acta Appl. Math. 6 (1986), 19–45. · Zbl 0603.22011 · doi:10.1007/BF00046933 [44] Ali, S. T. and Prugovečki, E.: Acta Appl. Math. 6 (1986), 47–62. · Zbl 0603.22012 · doi:10.1007/BF00046934 [45] Prugovečki, E.: Quantum Mechanics in Hilbert Space, 2nd edn, Academic Press, New York, 1981. [46] Busch, P.: J. Phys. A: Math. Gen. 18 (1985), 3351. · Zbl 0579.46052 · doi:10.1088/0305-4470/18/17/016 [47] Busch, P.: ’Can Quantum Theoretical Reality be Considered Sharp?’ in P.Mittelstaedt and E. W.Stachow (eds.), Recent Developments in Quantum Logic, Bibliographisches Institut, Mannheim, 1985. [48] Ali, S. T.: Lecture Notes in Phys. 139, (1981), 49. · doi:10.1007/3-540-10578-6_22 [49] Newton, T. D., and Wigner, E. P.: Rev. Mod. Phys. 21 (1949), 400. · Zbl 0036.26704 · doi:10.1103/RevModPhys.21.400 [50] Wightman, A. S.: Rev. Mod. Phys. 34 (1964), 845. · doi:10.1103/RevModPhys.34.845 [51] Mackey, G. W.: Induced Representations of Groups and Quantum Mechanics, Benjamin, New York, 1968. · Zbl 0174.28101 [52] Hegerfeldt, G. C.: Phys. Rev. D10 (1974), 3320. [53] Hegerfeldt, G. C. and Ruijsenaars, S. N. M.: Phys. Rev. D22 (1980), 377. [54] Hegerfeldt, G. C.: Phys. Rev. Lett. 54 (1985), 2359. · doi:10.1103/PhysRevLett.54.2395 [55] Greenwood, D. and Prugovečki, E.: Found. Phys. 12 (1984), 883. · doi:10.1007/BF00737555 [56] Prugovečki, E.: J. Math. Phys. 17 (1976), 517, 1673. · Zbl 0332.60005 · doi:10.1063/1.522936 [57] Ali, S. T. and Doebner, H. D.: J. Math. Phys. 17, 1105 (1976). · doi:10.1063/1.523034 [58] Born, M.: Proc. Roy. Soc. Edinburgh 59 (1939), 219. [59] Born, M.: Rev. Mod. Phys. 21 (1949), 463. · Zbl 0035.27206 · doi:10.1103/RevModPhys.21.463 [60] Busch, P.: Int. J. Theor. Phys. 24 (1985), 63. · doi:10.1007/BF00670074 [61] Busch, P.: J. Math. Phys. 25 (1984), 1794. · doi:10.1063/1.526357 [62] Busch, P. and Lahti, P. J.: Phys. Rev. D29 (1984), 1634. [63] Schroeck, F. E.Jr.: Found Phys. 12 (1982), 825. · doi:10.1007/BF01884995 [64] Schroeck, F. E.Jr.: Found Phys. 15 (1985), 279. · doi:10.1007/BF00737318 [65] Wodkiewicz, K.: Phys. Rev. Lett. 52 (1984), 1064. · doi:10.1103/PhysRevLett.52.1064 [66] Berberian, S. K.: Notes on Spectral Theory, Van Nostrand, Princeton, N.J., 1966. · Zbl 0138.39104 [67] Takesaki, M.: Theory of Operator Algebras I, Springer, New York, 1979. · Zbl 0436.46043 [68] Phelps, R. R.: Lectures on Choquet’s Theorem, Van Nostrand, Princeton, N.J., 1966. · Zbl 0135.36203 [69] Menger, K.: in A.Schilpp (ed.) Albert Einstein: Philosopher-Scientist, The Library of Living Philosophers, Evanston, Illinois, 1949. [70] Schweizer, B. and Sklar, A.: Probabilistic Metric Spaces, North-Holland, New York, 1983. · Zbl 0546.60010 [71] Eddington, A. S.: Fundamental Theory, Cambridge University Press, Cambridge, 1953. · Zbl 0063.01209 [72] Rosen, N.: Ann. Phys. (N.Y.) 19 (1962), 165. · Zbl 0109.21602 · doi:10.1016/0003-4916(62)90235-X [73] Blokhintsev, D. I.: Sov. J. Particles Nucl. 5 (1975), 243. [74] Prugovečki, E.: ’Quantum Geometry and the EPR Gedankenexperiment’, in P. J.Lahti and P.Mittelstaedt (eds), Proceedings of the Symposium on the Foundations of Physics, World Scientific, Singapore, 1985, pp. 525–539. [75] Nash, C. and Sen, S.: Topology and Geometry for Physicists, Academic Press, London, 1983. · Zbl 0529.53001 [76] Brooke, J. A. and Prugovečki, E.: Nuovo Cim. A79 (1984), 237. · doi:10.1007/BF02813364 [77] Brooke, J. A. and Guz, W.: Nuovo Cim. A78 (1983), 221. · doi:10.1007/BF02778184 [78] Banai, M. and Lukacs, B.: Lett. Nuovo Cim. 36 (1983), 533. · doi:10.1007/BF02725930 [79] Banai, M.: Int. J. Theor. Phys. 23 (1984), 1043. · doi:10.1007/BF02213416 [80] Brooke, J. A. and Prugovečki, E.: ’Geometrization of Quantum Mechanics’, Nuovo Cim. A 89 (1985), 126. · doi:10.1007/BF02804855 [81] Brooke, J. A. and Guz, W.: Nuovo Cim. A 78 (1983), 17. [82] Prugovečki, E.: ’General Relativistic and Gauge Invariant Quantum Geometries’, University of Toronto preprint. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.