×

Extended harmonic analysis of phase space representations for the Galilei group. (English) Zbl 0603.22011

A systematic method for finding all the irreducible subrepresentations of the projective phase space representations [the second author, Stochastic quantum mechanics and quantum spacetime (1984; Zbl 0536.60100)] of the Galilei group is presented. The spaces of the irreducible subrepresentations are shown to be reproducing kernel Hilbert spaces and a physical interpretation of the obtained results is then given in terms of systems of covariance [cf. the authors, Acta Appl. Math. 6, 1-18 (1986; see the preceding review)].
Reviewer: U.Cattaneo

MSC:

22E70 Applications of Lie groups to the sciences; explicit representations
81T60 Supersymmetric field theories in quantum mechanics
Full Text: DOI

References:

[1] Prugovečki, E.: Stochastic Quantum Mechanics and Quantum Spacetime, D. Reidel, Dordrecht, 1984.
[2] Ali, S. T. and Prugovečki, E.: J. Math. Phys. 18 (1977), 219. · Zbl 0364.46055 · doi:10.1063/1.523259
[3] Prugovečki, E.: J. Math. Phys. 19 (1978), 2260. · doi:10.1063/1.523602
[4] Prugovečki, E.: Phys. Rev. 18 (1978), 3655.
[5] Ali, S. T.: J. Math. Phys. 20 (1979), 1385. · Zbl 0452.22023 · doi:10.1063/1.524245
[6] Ali, S. T.: J. Math. Phys. 21 (1980), 818. · Zbl 0487.22016 · doi:10.1063/1.524461
[7] Schroeck, F. E.Jr.: J. Math. Phys. 22 (1981), 2562. · doi:10.1063/1.524833
[8] Giovannini, N.: J. Math. Phys. 22 (1981), 2389, 2397. · doi:10.1063/1.524821
[9] Ali, S. T.: in H.Doebner, S. I.Anderson and H. R.Petri (eds.), Differential Geometric Methods in Mathematical Physics, Lecture Notes in Mathematics, vol. 905, Springer, Berlin and New York, 1982.
[10] Ali, S. T. and Prugovečki, E.: Acta Appl. Math 6 (1986), 47–62. · Zbl 0603.22012 · doi:10.1007/BF00046934
[11] Lévy-Leblond, J.-M.: J. Math. Phys. 4 (1963), 776. · Zbl 0122.22302 · doi:10.1063/1.1724319
[12] Voisin, J.: J. Math. Phys. 6 (1965), 1519. · Zbl 0128.45502 · doi:10.1063/1.1704689
[13] Lévy-Leblond, J.-M.: in M.Loebl (ed.), Group Theory and Its Application, vol. II, Academic Press, New York, 1971.
[14] Saletan, E.: J. Math. Phys. 2 (1961), 1. · Zbl 0098.25804 · doi:10.1063/1.1724208
[15] Hermann, R.: Commun. Math. Phys. 3 (1966), 75. · doi:10.1007/BF01645447
[16] Inönü, E. and Wigner, E. P.: Nuovo Cim. 9 (1952), 705. · Zbl 0049.13802 · doi:10.1007/BF02782239
[17] Mackey, G. W.: Bull. Amer. Math. Soc. 69 (1963), 628. · Zbl 0136.11502 · doi:10.1090/S0002-9904-1963-10973-8
[18] Prugovečki, E.: Quantum Mechanics in Hilbert Space, 2nd edn, Academic Press, New York and London, 1981.
[19] Barut, A. O. and Rączka, R.: Theory of Group Representations and Applications, PWN, Warsaw, 1977.
[20] Prugovečki, E.: J. Math. Phys. 14 (1973), 1410. · Zbl 0277.47015 · doi:10.1063/1.1666195
[21] Gudder, S. P.: Stochastic Methods in Quantum Mechanics, North-Holland, New York, 1979. · Zbl 0439.46047
[22] Aronszajn, N.: Trans. Amer. Math. Soc. 68 (1950), 337. · doi:10.1090/S0002-9947-1950-0051437-7
[23] Cattaneo, U.: J. Math. Phys. 23 (1982), 659. · doi:10.1063/1.525413
[24] Gagnon, R.: ’Path Integrals and Scattering Theory in Nonrelativistic Stochastic Quantum Mechanics’, PhD Thesis, University of Toronto, 1983; J. Math. Phys. 26 (1985), 440.
[25] Born, M.: Rev. Mod. Phys. 21 (1949), 463. · Zbl 0035.27206 · doi:10.1103/RevModPhys.21.463
[26] Prugovečki, E.: Lett. Nuovo Cim. 32 (1981), 481; 33 (1982), 480. · doi:10.1007/BF02745252
[27] Brooke, J. A. and Guz, W.: Lett. Nuovo Cim. 35 (1982), 265. · doi:10.1007/BF02754662
[28] Ali, S. T. and Prugovečki, E.: Physica 89A (1977), 501. · doi:10.1016/0378-4371(77)90078-4
[29] Prugovečki, E.: Physica 91A (1978), 202. · doi:10.1016/0378-4371(78)90068-7
[30] Born, M.: Dan. Mat. Fys. Medd. 30, No. 2 (1955).
[31] Prigogine, I.: From Being to Becoming, Freeman, San Francisco, 1980, Appendix D.
[32] George, C. and Prigogine, I.: Physica 99A (1979), 369. · doi:10.1016/0378-4371(79)90064-5
[33] Misra, B., Prigogine, I., and Courbage, M.: Proc. Natl. Acad. Sci. U.S.A. 76 (1979), 4768. · doi:10.1073/pnas.76.10.4768
[34] Mackey, G. W.: Induced Representations of Groups and Quantum Mechanics, Benjamin, New York, 1968. · Zbl 0174.28101
[35] Riesz, F. and Sz.-Nagy, B.: Functional Analysis: Appendix, Frederick Ungar, New York, 1960.
[36] Prugovečki, E.: J. Phys. A10 (1977), 543.
[37] Schroeck, F. E.Jr.: Found. Phys. 12 (1982), 479. · doi:10.1007/BF00729996
[38] Brooke, J. A. and Prugovečki, E.: Lett. Nuovo Cim. 33 (1982), 171. · doi:10.1007/BF02725530
[39] Prugovečki, E.: Phys. Rev. Lett. 49 (1982) 1065. · doi:10.1103/PhysRevLett.49.1065
[40] Brooke, J. A. and Prugovečki, E.: Nuovo Cim. A 89 (1985), 126. · doi:10.1007/BF02804855
[41] S. T. Ali, ’Harmonic analysis on phase space I: Reproducing kernel Hilbert spaces, POV-measures and systems of covariance’, (to appear).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.