×

Harmonic analysis and systems of covariance for phase space representation of the Poincaré group. (English) Zbl 0603.22012

The spin zero phase space representation of the Poincaré group is studied following the corresponding investigation for the Galilei group carried out by the authors in a previous paper [Acta Appl. Math. 6, 19-45 (1986; see the preceding review)]. Again, the spaces of the irreducible subrepresentations are reproducing kernel Hilbert spaces; the related systems of covariance are analyzed.
Reviewer: U.Cattaneo

MSC:

22E70 Applications of Lie groups to the sciences; explicit representations
81T60 Supersymmetric field theories in quantum mechanics
83A05 Special relativity
81T20 Quantum field theory on curved space or space-time backgrounds
Full Text: DOI

References:

[1] Ali, S. T. and Prugovečki, E.: Acta Appl. Math. 6 (1986), 19–45. · Zbl 0603.22011 · doi:10.1007/BF00046933
[2] Prugovečki, E.: Stochastic Quantum Mechanics and Quantum Spacetime, D. Reidel, Dordrecht, 1984.
[3] Hegerfeldt, G. C.: Phys. Rev. D10 (1974), 3320.
[4] Skagerstam, B. K.: Int. J. Theor. Phys. 15 (1976), 213. · doi:10.1007/BF01807094
[5] Hegerfeldt, G. C. and Ruijsenaars, S. N. M.: Phys. Rev. 22 (1980), 377.
[6] Wigner, E. P.: Ann. Math. 40 (1939), 149. · Zbl 0020.29601 · doi:10.2307/1968551
[7] Barut, A. O. and R\(\backslash\)caczka, R.: Theory of Group Representations and Applications, PWN, Warsaw, 1977.
[8] Bogolubov, N. N., Logunov, A. A., and Todorov, I. T.: Introduction to Axiomatic Quantum Field Theory, Benjamin, Reading, Mass. (1975).
[9] Prugovečki, E.: Quantum Mechanics in Hilbert Space, 2nd edn, Academic Press, New York and London, 1981.
[10] Blokhintsev, D. I.: Space and Time in the Microworld, D. Reidel, Dordrecht, 1973. · Zbl 0254.53009
[11] Prugovečki, E.: J. Math. Phys. 19 (1978), 2260. · doi:10.1063/1.523602
[12] Prugovečki, E.: Phys. Rev. D18 (1978), 3655.
[13] Prugovečki, E.: Rep. Math. Phys. 17 (1980), 401. · doi:10.1016/0034-4877(80)90007-5
[14] Ehlers, J.: in B. K.Sachs (ed.), General Relativity and Cosmology, Academic Press, New York and London, 1971.
[15] Ali, S. T.: J. Math. Phys. 20 (1979), 1385. · Zbl 0452.22023 · doi:10.1063/1.524245
[16] Ali, S. T.: J. Math. Phys. 21 (1980), 818. · Zbl 0487.22016 · doi:10.1063/1.524461
[17] Hewitt, E. and Ross, K. A.: Abstract Harmonic Analysis, vol. II., Springer, Berlin, 1970. · Zbl 0213.40103
[18] Cattaneo, U.: J. Math. Phys. 23 (1982), 659. · doi:10.1063/1.525413
[19] Newton, T. D. and Wigner, E. P.: Rev. Mod. Phys. 21 (1949), 400. · Zbl 0036.26704 · doi:10.1103/RevModPhys.21.400
[20] Wightman, A. S.: Rev. Mod. Phys. 34 (1962), 845. · doi:10.1103/RevModPhys.34.845
[21] Ali, S. T.: ’Harmonic Analysis of Phase Space I: Reproducing Kernel Hilbert Spaces, POV Measures and Systems of Covariance’, (to appear).
[22] Riesz, F. and Sz-Nagy, B.: Functional Analysis: Appendix, Frederick Ungar, New York, 1960.
[23] Ali, S. T. and Prugovečki, E.: Nuovo Cim. A 63 (1981), 171. · doi:10.1007/BF02902668
[24] Prugovečki, E.: Nuovo Cim. A 89 (1985), 105. · doi:10.1007/BF02804854
[25] Prugovečki, E.: ’General Relativistic and Gauge Invariant Quantum Geometries’, University of Toronto preprint.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.