A precise result on the boundary regularity of biholomorphic mappings. (English) Zbl 0603.32013

Let \(\Omega_ 1\), \(\Omega_ 2\subset \subset {\mathbb{C}}^ n\) be strongly pseudoconvex domains with \(C^ k\) boundary, with \(k\leq \infty\). There is a sizeable literature devoted to proving that a biholomorphic mapping \(f: \Omega\) \({}_ 1\to \Omega_ 2\) extends to a smooth mapping on \(\overline{\Omega}_ 1\). In the present work, the author defines a notion of smoothness called \(S^ k\), which lies between \(C^ k\) and \(C^{k+1}\). A domain \(\Omega\) has boundary of class \(S^ k\) if \(\partial \Omega\) is \(C^ k\) and the (complex) Gauss mapping taking \(z\in \partial \Omega\) to the complex tangent space \(T_{z}^{{\mathbb{C}}}(\partial \Omega)\) is of class \(C^ k.\)
The main result is: If \(\partial \Omega_ 1\), \(\partial \Omega_ 2\) are strongly pseudoconvex and of class \(S^ k\), then a biholomorphic mapping \(f: \Omega\) \({}_ 1\to \Omega_ 2\) extends to \(\overline{\Omega}_ 1\) to be \(S^ k\), i.e. \(f\in C^ k(\overline{\Omega}_ 1)\) and the complex tangential part of f’ on \(\partial \Omega_ 1\) is also \(C^ k\).
Reviewer: E.Bedford


32T99 Pseudoconvex domains
32D15 Continuation of analytic objects in several complex variables
32A40 Boundary behavior of holomorphic functions of several complex variables
32V40 Real submanifolds in complex manifolds
32H99 Holomorphic mappings and correspondences
Full Text: DOI EuDML


[1] Bell, S.: Biholomorphic mappings and the \(\bar \partial \) -problem. Ann. of Math.114, 103-113 (1981) · Zbl 0423.32009 · doi:10.2307/1971379
[2] Bell, S., Ligocka, E.: A simplification and an extension of Fefferman’s theorem on biholomorphic mappings. Invent. Math.57, 283-289 (1980) · doi:10.1007/BF01418930
[3] ?irka, E.M.: Regularity of the boundary of an analytic set. Mat. Sb.117(159), 291-336 (1982) (in Russian)
[4] Chern, S.S., Moser, J.K.: Real hypersurfaces in complex manifolds. Acta Math.133, 219-271 (1974) · Zbl 0302.32015 · doi:10.1007/BF02392146
[5] Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math.26, 1-65 (1974) · Zbl 0289.32012 · doi:10.1007/BF01406845
[6] Henkin, G.M.: An analytic polihedron is not holomorphically equivalent to a strictly pseudoconvex domain. Dokl. Akad. Nauk SSSR210, 1026-1029 (1973) (in Russian) · Zbl 0288.32015
[7] Kellog, O.D.: Harmonic functions and Green’s integral. Trans. Am. Math. Soc.13, 109-132 (1912)
[8] Kobayashi, S.: Invariant distances on complex manifolds and holomorphic mappings. J. Math. Soc. Japan19, 460-489 (1967) · Zbl 0158.33201 · doi:10.2969/jmsj/01940460
[9] Krantz, S.: Intrinsic Lipschitz classes on manifolds with application to complex function theory and estimates for the \(\bar \partial \) and \(\bar \partial _b \) equations. Manuscr. Math.24, 351-378 (1978) · Zbl 0382.32012 · doi:10.1007/BF01168882
[10] Lewy, H.: On the boundary behavior of holomorphic mappings. Atti Accad. Naz. dei Lincei35, 1-8 (1977) · Zbl 0377.31008
[11] Lempert, L.: La metrique de Kobayashi et la repr?sentation des domains sur la boule. Bull. Soc. Math. Fr.109, 427-474 (1981) · Zbl 0492.32025
[12] Ligocka, E.: How to prove Fefferman’s theorem without the use of differential geometry. Ann. Pol. Math.39, 117-130 (1981) · Zbl 0489.32016
[13] Ligocka, E.: The H?lder continuity of the Bergman projection and proper holomorphic mappings. Stud. Math.LXXX, 89-107 (1984) · Zbl 0566.32017
[14] Margulis, G.A.: Boundary correspondence under biholomorphic mappings between multidimensional domains, All Union Conference on the Theory of Functions, Harkov, 1971, 137-138 (in Russian)
[15] Naruki, I.: On the extendability of isomorphisms of Cartan connections and biholomorphic mappings of bounded domains. T?hoku Math. J.28, 117-122 (1976) · Zbl 0346.32003 · doi:10.2748/tmj/1178240885
[16] Nirenberg, L., Webster, S.M., Yang, P.: Local boundary regularity of holomorphic mappings. Commun. Pure Appl. Math.33, 306-338 (1980) · Zbl 0436.32018 · doi:10.1002/cpa.3160330306
[17] Pin?uk, S.I.: On the analytic continuation of biholomorphic mappings. Math. Sb.27(3), 375-392 (1975) (in Russian) · Zbl 0366.32010 · doi:10.1070/SM1975v027n03ABEH002520
[18] Royden, H.L.: Remarks on the Kobayashi metric, Several Complex Variables II., Proc. Internat. Conf., Univ. of Maryland, College Park, Md. (1970). Lect. Notes Math. Vol.185, 125-137 Berlin Heidelberg New York: Springer 1971
[19] Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton: Princeton Univ. Press 1970 · Zbl 0207.13501
[20] Webster, S.M.: On the reflection principle in several complex variables. Proc. Am. Math. Soc.72, 26-28 (1978) · Zbl 0626.32019 · doi:10.1090/S0002-9939-1978-0477138-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.