×

zbMATH — the first resource for mathematics

Instability of nonlinear bound states. (English) Zbl 0603.35007
Authors’ summary: We establish a sharp instability theorem for the bound states of lowest energy of the nonlinear Klein-Gordon equation, \(u_{tt}-\Delta u+f(u)=0\), and the nonlinear Schrödinger equation, \(- iu_ t-\Delta u+f(u)=0\).
Reviewer: U.F.Wodarzik

MSC:
35B35 Stability in context of PDEs
35Q99 Partial differential equations of mathematical physics and other areas of application
35G20 Nonlinear higher-order PDEs
35L70 Second-order nonlinear hyperbolic equations
35K55 Nonlinear parabolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, D.: Stability of time-dependent particlelike solutions in nonlinear field theories II. J. Math. Phys.12, 945-952 (1971)
[2] Berestycki, H., Cazenave, T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires. C.R. Acad. Sci.293, 489-492 (1981) · Zbl 0492.35010
[3] Berestycki, H., Lions, P. L.: Nonlinear scalar field equations. Arch. Rat. Mech. Anal.82, 313-375 (1983) · Zbl 0556.35046
[4] Cazenave, T., Lions, P. L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys.85, 549-561 (1982) · Zbl 0513.35007
[5] Glassey, R.: On the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J. Math. Phys.18, 1794-7 (1977) · Zbl 0372.35009
[6] Keller, C.: Stable and unstable manifolds for the nonlinear wave equation with dissipation. J. Diff. Eqs.50, 330-347 (1983) · Zbl 0515.35061
[7] Lee, T. D.: Particles physics and introduction to field theory. New York: Harwood Academic 1981
[8] Makhankov, V. G.: Dynamics of classical solutions (in non-integrable systems). Phys. Rep.35, 1-128 (1978)
[9] Payne, L., Sattinger, D.: Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math.22, 273-303 (1975) · Zbl 0317.35059
[10] Shatah, J.: Stable standing waves of nonlinear Klein-Gordon equations. Commun. Math. Phys.91, 313-327 (1983) · Zbl 0539.35067
[11] Shatah, J.: Unstable ground states of nonlinear Klein-Gordon equations. Trans. A.M.S. (1985) · Zbl 0617.35072
[12] Strauss, W.: On weak solutions of semi-linear hyperbolic equations. Anais Acad. Brasil. Cienc.42, 645-651 (1970) · Zbl 0217.13104
[13] Strauss, W.: Existence of solitary waves in higher dimensions. Commun. Math. Phys.55, 149-162 (1977) · Zbl 0356.35028
[14] Strauss, W.: Stable and unstable states of nonlinear wave equations. Contemp. Math.17, 429-441 (1983) · Zbl 0588.35027
[15] Weinstein, M.: Stability analysis of ground states of nonlinear Schrödinger equations. preprint · Zbl 0583.35028
[16] Berestycki, H., Gallouet, T., Kavian, O.: Equations des champs scalaires euclidiens non linéaires dans le plan. C.R. Dokl. Acad. Sci.297, 307-310 (1983) · Zbl 0544.35042
[17] Brezis, H., Lieb, E.: Minimum action solutions of some vector field equations. Commun. Math. Phys.96, 97-113 (1984) · Zbl 0579.35025
[18] Pecher, H.: Low-energy scattering for nonlinear Klein-Gordon equations. preprint · Zbl 0588.35061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.