×

Square roots of elements with an unbounded spectrum. (English) Zbl 0603.46054

The author considers projective limits of Banach algebras. The spectrum of an element of this kind of algebra is not necessarily bounded. The paper shows the existence of a square root of elements with positive spectrum and studies the particular case of involution algebras.
Reviewer: H.Hogbe-Nlend

MSC:

46H05 General theory of topological algebras
PDFBibTeX XMLCite
Full Text: EuDML

References:

[1] Bonsall F., Duncan J.: Complete Normed Algebras. Springer-Verlag 1973. · Zbl 0271.46039
[2] Ford J. W. M.: A square root lemma for Banach star algebras. J. Lond. Math. Soc. 42, p. 521-522(1967). · Zbl 0145.38702 · doi:10.1112/jlms/s1-42.1.521
[3] Michael E. A.: Locally Multiplicatively-convex Topological Algebras. Memoirs of AMS nb. 11 (1952). · Zbl 0047.35502
[4] Najmark M. A.: Normirovannyje koľca. Moskva 1968.
[5] Pták V.: Banach Algebras with involution. Manuscripta math. 6, p. 245 - 290 (1972), Springer-Verlag. · Zbl 0304.46036
[6] Pták V.: On the spectral radius in Banach algebras with involution. Bull. Lond. Math. Soc. 2, p. 327-334 (1970). · Zbl 0209.44403 · doi:10.1112/blms/2.3.327
[7] Štěrbová D.: Square roots and quasi-square roots in locally multiplicatively-convex algebras. AUPO, p. 103-110 (1980). · Zbl 0471.46029
[8] Želazko W.: Selected Topics in Topological Algebras. Lecture Notes Series N. 31. (1971), Aarhus University. · Zbl 0221.46041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.