Haslinger, J.; Neittaanmäki, P. On optimal shape design of systems governed by mixed Dirichlet-Signorini boundary value problems. (English) Zbl 0603.49020 Math. Methods Appl. Sci. 8, 157-181 (1986). The authors consider the problem of finding an optimal shape for systems governed by the mixed unilateral boundary value problem of Dirichlet- Signorini type. The corresponding state problem is approximated by a penalty method and the resulting approximated design problem is discretized by means of the finite element method. The convergence of the solutions of the discretized problems to a solution of the original problem is demonstrated. Moreover, the discretized versions are formulated as a nonlinear programming problem and numerical results are given and compared with the results of two other methods. Reviewer: P.Quittner Cited in 8 Documents MSC: 49M15 Newton-type methods 35J85 Unilateral problems; variational inequalities (elliptic type) (MSC2000) 49M30 Other numerical methods in calculus of variations (MSC2010) 49J40 Variational inequalities 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 65K10 Numerical optimization and variational techniques 74P99 Optimization problems in solid mechanics 93C20 Control/observation systems governed by partial differential equations Keywords:optimal shape; mixed unilateral boundary value problem of Dirichlet- Signorini type; finite element method; convergence PDF BibTeX XML Cite \textit{J. Haslinger} and \textit{P. Neittaanmäki}, Math. Methods Appl. Sci. 8, 157--181 (1986; Zbl 0603.49020) Full Text: DOI Link References: [1] Arndt, Existenzsätze für Optimum Design Probleme bei Diffusionsvorgängen. Dissertation, TH Darmstadt (1978) [2] Bailet-Intissar, Non-linear mixed boundary value problems for elliptic partial differential equations, Proc. Roy. Soc. Edinburgh 90A pp 347– (1981) · Zbl 0486.35033 [3] Begis, Application de la methode des éléments finis à l’approximation d’un problème de domaine optimal, Appl. Math. Optim. 2 pp 130– (1975) · Zbl 0323.90063 [4] Cea, Optimization: Théorie et algorithmes (1971) [5] Cea , J. Problems of shape optimal design. 1005 1048 · Zbl 0517.73096 [6] Cea , J. Numerical methods of shape optimal design. 1049 1088 · Zbl 0517.73095 [7] Duvaut , G. Lions , J. L. Inequalities in mechanics and physics Berlin Springer · Zbl 0331.35002 [8] Fletcher, Optimum Structural Design, Theory and applications pp 51– (1973) [9] Fletcher, Constrained optimization 2 (1981) [10] Haslinger , J. Neittaanmäki , P. Penalty method in design optimization of systems governed by a unilateral boundary value problem, Ann. Fac. Sci. Tolouse V 1983 199 216 · Zbl 0547.49004 [11] Haslinger, On the method of penalization in design optimization of systems governed by some unilateral boundary value problems, Proc. of Confer. Optimale Kontrolle der Partielle Differentialgleichungen auf dem Schwerpunkt der Numerischen Verfahren. · Zbl 0557.49019 [12] Haslinger, On the existence of optimal shape in contact problems, Numer, Funct. Anal. and Optimiz. 7 (2 & 3) pp 107– (1984-85) [13] Haug , E. J. A review of distributed parameter structural optimization literature. 3 68 [14] Haug, Applied optimal design, mechanical and structural systems (1979) [15] Hlaváček, Optimization of the domain in elliptic unilateral boundary value problems by finite element method, R. A. I. R. O. Num. Anal. 16 pp 351– (1982) · Zbl 0496.65057 [16] Hlaváček , I. Bock , I. Lovišek , J. Part III Optimal design of an elastic plate [17] Mignot, Contràle dans les inéquations variationelles elliptiques, J. Funct. Anal. 22 pp 25– (1976) · Zbl 0364.49003 [18] Murtagh, Large-scale linearly constrained optimization, Math. Programming 14 pp 41– (1978) · Zbl 0383.90074 [19] Nečas, Les Méthodes Directes en Theorie des Equations Elliptiques (1967) [20] Neittaanmäki , P. Tiihonen , T. Lappeenranta Univ. of Technology, Dept. of Phys. and Math. 1982 [21] Neittaanmäki, Sensitivity analysis for a class of shape design problems, Ber. Univ. Jyväskylä Math. Inst. · Zbl 0592.49005 [22] 1981 [23] Optimum Structural Design II (1983) [24] Panagiotopoulos, Optimal control in the unilateral thin plate theory, Arch. Mech. Stos. 29 pp 25– (1977) · Zbl 0359.73050 [25] Pironneau, Optimal shape design for elliptic systems (1984) · Zbl 0534.49001 [26] Sokolowski , J. Sensitivity analysis of a class of variational inequalities. 1600 1605 · Zbl 0516.73108 [27] Sokolowski, Shape sensitivity analysis for variational inequalities pp 399– (1982) · Zbl 0487.49004 [28] Velte, Are the optimum problems in structural design well posed?, Arch. Mech. Anal. 78 pp 200– (1982) · Zbl 0488.73101 [29] Zolesio , J. P. The material derivative (or speed) method for shape optimization. 1089 1151 · Zbl 0517.73097 [30] Zoutendijk, Mathematical programming methods (1976) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.