## Nonuniqueness in the Plateau problem for surfaces of constant mean curvature.(English)Zbl 0603.49027

Let B denote the open unit disc in $${\mathbb{R}}^ 2$$ with oriented boundary C. Let $$\gamma$$ : $$C\to {\mathbb{R}}^ 3$$ be an oriented closed Jordan curve in $${\mathbb{R}}^ 3$$. For a given real constant H, the Plateau problem for surfaces of constant mean curvature H consists of determining a function $$x\in C^ 2(B;{\mathbb{R}}^ 3)\cap C^ 0(\bar B;{\mathbb{R}}^ 3)$$ such that $$\Delta x=2Hx_ u\wedge x_ v$$ in B, where $$x|_ C: C\to \gamma$$ is an oriented monotone, continuous, parametrization of $$\gamma$$, and $$| x_ u|^ 2-| x_ v|^ 2=0=x_ u\cdot x_ v$$ in B.
Such a solution is called an H-surface spanning $$\gamma$$. For sufficiently small $$| H|$$, that is for $$| H| \sup | \gamma (\omega)| \leq 1$$, existence of an H-surface is known from the work of other authors. Letting $$\gamma$$ be a plane circular arc with $$0<| H| \sup | \gamma (\omega | <1$$, one easily sees using portions of a sphere that for $$| H|$$ small enough, but non- zero, there exist two geometrically distinct surfaces of (signed) mean curvature H spanning $$\gamma$$. Motivated by this example, the author gives a sufficient condition for a curve under which at least two geometrically distinct H-surfaces will exist for any H in a punctured neighborhood of 0. This sufficient condition is satisfied by any sufficiently smooth simple curve lying in a plane.
To describe the method of proof, let $$D(x)=2^{-1}\int_{B}| \nabla x|^ 2d\omega$$, $$V(x)=3^{-1}\int_{B}x_ u\wedge x_ v\bullet x d\omega$$ denote the Dirichlet and volume integrals, respectively. The H- surfaces are extremals of the functional $$E_ H(x)=D(x)+2H V(x)$$. In over-simplified terms, the proof proceeds by minimizing $$E_ H$$ over a collection of functions x, which satisfy (*) D(x-h)$$\geq 1$$, where h is the harmonic extension of $$x|_ C$$. The condition (*) insures that the solution obtained is ”large” while the solution arising from the earlier existence result, mentioned above, is ”small”.
Reviewer: H.Parks

### MSC:

 49Q05 Minimal surfaces and optimization 53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
Full Text:

### References:

 [1] Alexandroff, A. D., A characteristic property of spheres, Annali di Mat. (1962), 203-315. · Zbl 0107.15603 [2] Alt, H. W., Verzweigungspunkte von H-Flächen, Math. Z. 127 (1972), 333-362. · Zbl 0253.58007 [3] Ambrosetti, A., & P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. · Zbl 0273.49063 [4] Barbosa, J. L., & M. do Carmo, Hopf’s conjecture for stable immersed surfaces, preprint. [5] Bononcini, V., Un teorema di continuitá per integrali su superficie chiuse, Riv. Mat. Univ. Parma 4 (1953), 299-311. · Zbl 0053.03103 [6] Courant, R., Dirichlet’s principle, conformal mapping and minimal surfaces, Interscience, New York 1950. · Zbl 0040.34603 [7] Dierkes, U., Hildebrandt, S., & O. Wohlrab, Minimalflächen, to appear. [8] Douglas, J., Solution of the problem of Plateau, Trans. A.M.S.33 (1931), 263-321. · JFM 57.1542.03 [9] Douglas, J., Minimal surfaces of higher topological structure, Annals of Math. 40 (1939), 205-298. · JFM 65.0454.01 [10] Heinz, E., Über die Existenz einer Fläche konstanter mittlerer Krümmung bei vorgegebener Berandung, Math. Ann. 127 (1954), 258-287. · Zbl 0055.15303 [11] Heinz, E., On the existence problem for surfaces of constant mean curvature, Comm. Pure Math. 9 (1956), 467-470. · Zbl 0071.14501 [12] Heinz, E., An inequality of isoperimetric type for surfaces of constant mean curvature, Arch. Rational Mech. Anal. 33 (1969), 155-168. · Zbl 0176.51602 [13] Heinz, E., On the nonexistence of a surface of constant mean curvature with finite area and prescribed rectifiable boundary, Arch. Rational Mech. Anal. 35 (1969), 249-252. · Zbl 0184.32802 [14] Heinz, E., Unstable surfaces of constant mean curvature, Arch. Rational Mech. Anal. 38 (1970), 257-267. · Zbl 0203.53804 [15] Hildebrandt, S., Boundary behaviour of minimal surfaces, Arch. Rational Mech. Anal. 35 (1969), 47-69. · Zbl 0183.39402 [16] Hildebrandt, S., Über das Randverhalten von Minimalflächen, Math. Ann. 165 (1966), 1-18. · Zbl 0138.42302 [17] Hildebrandt, S., Über Flächen konstanter mittlerer Krümmung, Math. Z. 112 (1969), 107-144. · Zbl 0183.39501 [18] Hildebrandt, S., Randwertprobleme für Flächen vorgeschriebenen mittlerer Krümmung und Anwendungen auf die Kapillaritätstheorie, Math. Z. 112 (1969), 205-213. · Zbl 0177.15104 [19] Hildebrandt, S., On the Plateau problem for surfaces of constant mean curvature, Comm. Pure Appl. Math. 23 (1970), 97-114. · Zbl 0181.38703 [20] Hildebrandt, S., Nonlinear elliptic systems and harmonic mappings, SFB-Vorlesungsreihe no. 3, University of Bonn, 1980. [21] Hopf, H., Über Flächen mit einer Relation zwischen den Hauptkrümmungen, Math. Nachr. 4 (1951), 239-249. · Zbl 0042.15703 [22] Morrey, C. B., Multiple integrals in the calculus of variations, Springer, Berlin, Heidelberg, New York, 1966. · Zbl 0142.38701 [23] Morse, M., & C. B. Tompkins, The existence of minimal surfaces of general critical types, Ann. of Math. (2) 40 (1939), 443-472, and 42 (1941), 331. · JFM 65.0456.04 [24] Nitsche, J. C. C., Vorlesungen über Minimalflächen, Springer, Berlin-Heidelberg-New York, 1976. · Zbl 0319.53003 [25] Palais, R. S., & S. Smale, A generalized Morse theory, Bull. A.M.S. 70 (1964), 165-171. · Zbl 0119.09201 [26] Radó, T., On the problem of Plateau, Ann. of Math. 31 (1930), 457-469. · JFM 56.0437.02 [27] Serrin, J., On surfaces of constant mean curvature that span a given space curve, Math. Z. 112 (1969), 77-88. · Zbl 0182.24001 [28] Shiffman, M., The Plateau problem for nonrelative minima, Ann. of Math. (2) 40(1939), 834-854. · JFM 65.1295.02 [29] Steffen, K., Flächen konstanter mittlerer Krümmung mit vorgegebenem Volumen oder Flächeninhalt, Arch. Rational Mech. Anal. 49 (1972), 99-128. · Zbl 0259.53043 [30] Steffen, K., Ein verbesserter Existenzsatz für Flächen konstanter mittlerer Krümmung, Manusc. Math. 6 (1972), 105-139. · Zbl 0229.53011 [31] Steffen, K., Isoperimetric inequalities and the problem of Plateau, Math. Ann.222 (1976), 97-144. · Zbl 0345.49024 [32] Ströhmer, G., Instabile Flächen vorgeschriebener mittlerer Krümmung, Math. Z. 174 (1980), 119-133. · Zbl 0441.49052 [33] Struwe, M., Multiple solutions of differential equations without the Palais-Smale condition, Math. Ann. 261 (1982), 399-412. · Zbl 0506.35034 [34] Struwe, M., Quasilinear elliptic eigenvalue problems, Comm, Math. Helv. 58 (1983), 509-527. · Zbl 0531.35035 [35] Tomi, F., Bemerkungen zum Regularitätsproblem der Gleichung vorgeschriebenen mittlerer Krümmung, Math. Z. 132 (1973), 323-326. · Zbl 0258.35022 [36] Wente, H., An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318-344. · Zbl 0181.11501 [37] Wente, H., A general existence theorem for surfaces of constant mean curvature, Math. Z. 120 (1971), 277-288. · Zbl 0214.11101 [38] Wente, H., The differential equation ?x = 2Hx u ? xv with vanishing boundary values, Proc. A.M.S. 50 (1975), 131-137. · Zbl 0313.35030 [39] Wente, H., Large solutions to the volume constrained Plateau problem, Arch. Rational Mech. Anal. 75 (1980), 59-77. · Zbl 0473.49029 [40] Wente, H., in Analysis-Seminar 1981, SFB-Vorlesungsreihe no. 8, Univ. of Bonn, 1981. [41] Werner, H., Das Problem von Douglas für Flächen konstanter mittlerer Krümmung, Math. Ann. 133 (1957), 303-319. · Zbl 0077.34901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.