×

Extracting qualitative dynamics from experimental data. (English) Zbl 0603.58040

We consider the notion of qualitative information and the practicalities of extracting it from experimental data. Our approach, based on a theorem of Takens, draws on ideas from the generalized theory of information known as singular system analysis due to Bertero, Pike and co-workers. We illustrate our technique with numerical data from the chaotic regime of the Lorenz model.

MSC:

37N99 Applications of dynamical systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Packard, N. H.; Crutchfield, J. P.; Farmer, J. D.; Shaw, R. S., Geometry from a time series, Phys. Rev. Lett., 45, 712 (1980)
[2] Takens, F., Detecting strange attractors in turbulence, (Rand, D. A.; Young, L.-S., Lecture Notes in Mathematics (1981), Springer: Springer Berlin), 366 · Zbl 0513.58032
[3] Pike, E. R.; McWhirter, J. G.; Bertero, M.; de Mol, C., Generalised information theory for inverse problems in signal processing, (IEE Proceedings, 131 (Oct. 1984)), 660, Also see the references therein
[4] Edelson, D.; Field, R. J.; Noyes, R. M., Mechanistic details of the Belousov-Zhabotinskii oscillations, Int. J. Chem. Kinet., 7, 417 (1975)
[5] Di Prima, R. C.; Swinney, H. L., Instabilities and transition in flow between concentric rotating cylinders, (Swinney, H. L.; Gollub, J. P., Hydrodynamic Instabilities and the Transition to Turbulence (1981), Springer: Springer Berlin), 139 · Zbl 0494.76048
[6] Poincaré, H., Les Méthodes Nouvelles de la Mécanique Céleste (1899), Gauthier-Villars: Gauthier-Villars Paris, 3 vols. · JFM 30.0834.08
[7] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (1983), Springer: Springer Berlin · Zbl 0515.34001
[8] Palis, J.; de Melo, W., Geometric Theory of Dynamical Systems: An Introduction (1982), Springer: Springer New York
[9] Chillingworth, D. R.J., Differential Topology with a View to Applications, (Research Notes in Mathematics, 9 (1976), Pitman: Pitman London), for a good introduction to embeddings: · Zbl 0336.58001
[10] Roux, J. C.; Simoyi, R. H.; Swinney, H. L., Observation of a strange attractor, Physica, 8D, 257-266 (1983) · Zbl 0538.58024
[11] Stewart, G. W., Introduction to Matrix Computations (1973), Academic Press: Academic Press New York · Zbl 0302.65021
[13] Devijver, P. A.; Kittler, J., Pattern Recognition: A Statistical Approach (1982), Prentice-Hall: Prentice-Hall New York · Zbl 0476.68057
[14] Broomhead, D. S.; Elgin, J. N.; Jakeman, E.; Sarkar, S.; Hawkins, S. C.; Drazin, P., Statistical properties in the chaotic regime of the Maxwell-Bloch equations, Optics Comms., 50, 56 (1984)
[15] Grassberger, P.; Procaccia, I., Dimensions and entropies of strange attractors from a fluctuating dynamics approach, Physica, 13D, 34 (1984) · Zbl 0587.58031
[16] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmospheric Sci., 20, 130 (1963) · Zbl 1417.37129
[18] Rowlands, G., An approximate analytic solution of the Lorenz equations, J. Phys., A16, 585 (1983) · Zbl 0589.58021
[19] Rössler, O., Different types of chaos in two simple differential equations, Z. Naturforsch, 31a, 1661 (1976)
[20] Broomhead, D. S.; King, G. P., On the qualitative analysis of experimental dynamical systems, (Sarkar, S., Nonlinear Phenomena and Chaos (1986), Adam Hilger: Adam Hilger Bristol), to appear in:
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.