A justification of the one-dimensional linear model of elastic beam. (English) Zbl 0603.73056

The authors discuss the title problem by showing that the one-dimensional model of an elastic beam is an approximation to the three-dimensional linear theory of elasticity. The beam is assumed to be homogeneous and isotropic. The proof is based upon an analysis given earlier by the authors [Ber. Math.-Stat. Sekt. Forschungszent. Graz 154, 5 S. (1981; Zbl 0516.73022)].
The paper is very specialized but it could be of interest to theoreticians in elasticity.
Reviewer: R.L.Huston


74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74B99 Elastic materials
74H99 Dynamical problems in solid mechanics


Zbl 0516.73022
Full Text: DOI


[1] Aganović , I. Tutek , Z. Eindimensionale Approximation der Lameschen Gleichung. Berichte 1981
[2] Ciarlet, A justification of the two-dimensional linear plate model, J. mécanique 18 (2) pp 315– (1979) · Zbl 0415.73072
[3] Ciarlet, Two-dimensional approximation of three-dimensional eigenvalue problem in plate theory, Comput. Math. Appl. Mech. Engrg. 26 pp 145– (1981) · Zbl 0489.73057
[4] Destuynder, Comparaison entre les modeles tridimensionales et bidimensionales des plaques en elasticité, RAIRO Analyse Numérique 15 pp 331– (1981)
[5] Duvaut, Les inéquations en mécanique et en physique (1972)
[6] Germain, Mécanique des milieux continus (1962)
[7] Lions, Perturbations singuliéres dans les problémes aux limites et en contràle optimal (1973)
[8] Lions, Problémes aux limites non homogènes et applications (1968)
[9] Neas, Mathematical theory of elastic and elastico-plastic bodies (1981)
[10] Rigolot, Sur une théorie asymptotic des poutres, J. mécanique 11 (4) pp 673– (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.