zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Persistence, extinction, and critical patch number for island populations. (English) Zbl 0603.92019
Sufficient conditions are derived for persistence and extinction of a population inhabiting several islands. Discrete reaction-diffusion population models are analyzed which describe growth and diffusion of a population on a group of islands or a patch environment. A critical patch number is defined as the number of islands below which the population goes extinct on that group of islands. It is shown that population persistence on one island leads to population persistence for the entire archipelago. Both single-species and multi-species models are discussed.

39A12Discrete version of topics in analysis
Full Text: DOI
[1] Allen, L. J. S.: Persistence and extinction in Lotka-Volterra reaction-diffusion equations. Math. Biosci. 65, 1--12 (1983) · Zbl 0522.92021 · doi:10.1016/0025-5564(83)90068-8
[2] Allen, L. J. S.: Persistence and extinction in single-species reaction-diffusion models. Bull. Math. Biol. 45, 209--227 (1983) · Zbl 0543.92020
[3] DeAngelis, D. L., Post, W. M., Travis, C. C.: Positive feedback in natural systems. Biomathematics 15. Berlin, Heidelberg, New York: Springer 1986 · Zbl 0594.92001
[4] Fahrig, L., Merriam, G.: Habitat patch connectivity and population survival. Ecology 66, 1762- 1768 (1985) · doi:10.2307/2937372
[5] Gurney, W. S. C., Nisbet, R. M.: The regulation of inhomogeneous populations. J. Theor. Biol. 52, 441--457 (1975) · doi:10.1016/0022-5193(75)90011-9
[6] Hastings, A.: Global stability in Lotka-Volterra systems with diffusion. J. Math. Biol. 6, 163--168 (1978) · Zbl 0393.92013 · doi:10.1007/BF02450786
[7] Hastings, A.: Dynamics of a single species in a spatially varying environment: The stabilizing role of high dispersal rates. J. Math. Biol. 16, 49--55 (1982) · Zbl 0496.92010 · doi:10.1007/BF00275160
[8] Kierstead, H., Slobodkin, L. B.: The size of water masses containing plankton blooms. J. Mar. Res. 12, 141--147 (1953)
[9] Lakshmikantham, V., Leela, S.: Differential and integral inequalities theory and applications, vol. 1, New York: Academic Press 1969 · Zbl 0177.12403
[10] Lancaster, P.: Theory of matrices. New York: Academic Press 1969 · Zbl 0186.05301
[11] Levin, S. A.: Dispersion and population interactions. Am. Nat. 108, 207--228 (1974) · doi:10.1086/282900
[12] Levin, S. A.: Population models and community structure in heterogeneous environments. In: Levin, S. A. (ed.) Studies in mathematical biology: Populations and Communities, vol. II, pp. 439--476. Washington D.C.: M.A.A. 1978
[13] Ludwig, D., Jones, D. D., Holling, C. S.: Qualitative analysis of insect outbreak systems, the spruce budworm and forest. J. Anim. Ecol. 47, 315--332 (1978) · doi:10.2307/3939
[14] Ludwig, D., Aronson, D. G., Weinberger, H. F.: Spatial patterning of the spruce budworm. J. Math. Biol. 8, 217--258 (1979) · Zbl 0412.92020 · doi:10.1007/BF00276310
[15] MacArthur, R. H., Wilson, E. O.: An equilibrium theory of insular zoogeography. Evol. 17, 373--387 (1963) · doi:10.2307/2407089
[16] MacArthur, R. H., Wilson, E. O.: The theory of island biogeography. Princeton, N.J.: Princeton University Press 1967
[17] May, R. M.: Stability and complexity in model ecosystems. Princeton, N.J.: Princeton University Press 1974.
[18] Namba, T.: Asymptotic behaviour of solutions of the diffusive Lotka-Volterra equations. J. Math. Biol. 10, 295--303 (1980) · Zbl 0508.34039 · doi:10.1007/BF00276988
[19] Okubo, A.: Critical patch size for plankton and patchiness. In: Levin, S. A. (ed.) Mathematical Ecology. Proceedings, Trieste 1982 (Lect. Notes Biomath., vol. 54, pp. 456--477) Berlin, Heidelberg, New York: Springer 1984
[20] Othmer, H. G., Scriven, L. E.: Instability and dynamic patterns in cellular networks. J. Theor. Biol. 32, 507--537 (1971) · doi:10.1016/0022-5193(71)90154-8
[21] Skellam, J. G.: Random dispersal in theoretical populations. Biometrika. 38, 196--218 (1951) · Zbl 0043.14401
[22] Svirezhev, Y. M., Logofet, D. O.: Stability of biological communities. Moscow: Mir Publishers 1983 · Zbl 0573.92020
[23] Yodzis, P.: Competition for space and the structure of ecological communities. Lect. Notes Biomath. 25. Berlin, Heidelberg, New York: Springer 1978 · Zbl 0387.92009