×

zbMATH — the first resource for mathematics

A thermodynamic consistent damage and healing model for self healing materials. (English) Zbl 06032961
Summary: Thermodynamics of the damage and the healing processes for viscoplastic materials is discussed in detail and constitutive equations for coupled inelastic-damage-healing processes are proposed in a thermodynamic consistent framework. Small deformation state is utilized and the kinematic and the isotropic hardening effects for the damage and healing processes are introduced into the governing equations. Two new yield surfaces for the damage and healing processes are proposed that take into account the isotropic hardening effect. The computational aspect for solving the coupled elasto-plastic-damage-healing problem is investigated, and the mechanical behavior of the proposed polymeric based self healing system is obtained. Uniaxial compression tests are implemented on a shape memory polymer based self healing system and the damage and the healing are captured by measurement of the changes in the modulus of elasticity. It is concluded that the proposed constitutive equations can model the damage and healing effectively and the mechanical behavior of a shape memory polymer based self healing system can be precisely modeled using this formulation.

MSC:
74R20 Anelastic fracture and damage
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74A15 Thermodynamics in solid mechanics
74-05 Experimental work for problems pertaining to mechanics of deformable solids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arghavani, J.; Auricchio, F.; Naghdabadi, R.; Reali, A.; Sohrabpour, S.: A 3-d phenomenological constitutive model for shape memory alloys under multiaxial loadings, International journal of plasticity 26, 976-991 (2010) · Zbl 06035904
[2] Asaro, R. J.; Lubarda, V.: Mechanics of solids and materials, (2006) · Zbl 1220.74004
[3] ASTM-C365 (2005). Standard test method for flatwise compressive properties of sandwich cores. ASTM International, DOI: 10.1520/C0365_C0365M-05,PA, <www.astm.org>.
[4] Ayoub, G.; Zaı&uml, F.; Ri; Naı&uml, M.; T-Abdelaziz; Gloaguen, J. M.: Modelling large deformation behaviour under loading – unloading of semicrystalline polymers: application to a high density polyethylene, International journal of plasticity 26, 329-347 (2010) · Zbl 06035870
[5] Barbero, E. J.; Greco, F.; Lonetti, P.: Continuum damage-healing mechanics with application to self-healing composites, International journal of damage mechanics 14, 51-81 (2005)
[6] Beloshenko, V. A.; Varyukhin, V. N.; Voznyak, Yuv.: The shape memory effect in polymers, Russian chemical reviews 74, 265 (2005)
[7] Chaboche, J. L.: Cyclic viscoplastic constitutive equations. Part I: A thermodynamically consistent formulation, Journal of applied mechanics 60, 813-821 (1993) · Zbl 0816.73014
[8] Chaboche, J. L.: Thermodynamic formulation of constitutive equations and application to the viscoplasticity and viscoelasticity of metals and polymers, International journal of solids and structures 34, 2239-2254 (1997) · Zbl 0942.74535 · doi:10.1016/S0020-7683(96)00162-X
[9] Colak, Ozgen U.: Modeling deformation behavior of polymers with viscoplasticity theory based on overstress, International journal of plasticity 21, 145-160 (2005) · Zbl 1112.74335 · doi:10.1016/j.ijplas.2004.04.004
[10] Doghri, I.: Fully implicit integration and consistent tangent modules in elasto-plasticity, Mechanics of solid materials 55, 59-64 (1988)
[11] G’sell, C.; Hiver, J. M.; Dahoun, A.: Experimental characterization of deformation damage in solid polymers under tension, and its interrelation with necking, International journal of solids and structures 39, 3857-3872 (2002)
[12] Hansen, N. R.; Schreyer, H. L.: A thermodynamically consistent framework for theories of elastoplasticity coupled with damage, International journal of solids and structures 31, 359-389 (1994) · Zbl 0853.73006 · doi:10.1016/0020-7683(94)90112-0
[13] Hartl, D. J.; Chatzigeorgiou, G.; Lagoudas, D. C.: Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys, International journal of plasticity 26, 1485-1507 (2010) · Zbl 06035922
[14] Ho, K.; Krempl, E.: Extension of the viscoplasticity theory based on overstress (vbo) to capture non-standard rate dependence in solids, International journal of plasticity 18, 851-872 (2002) · Zbl 1050.74011 · doi:10.1016/S0749-6419(01)00011-0
[15] Ilankamban, R.; Krajcinovic, D.: A constitutive theory for progressively deteriorating brittle solids, International journal of solids and structures 23, 1521-1534 (1987)
[16] John, M.; Li, G.: Self-healing of sandwich structures with grid stiffened shape memory polymer syntactic foam core, Smart materials and structures 19, 1-12 (2010)
[17] Khan, A.; Zhang, H.: Finite deformation of a polymer: experiments and modeling, International journal of plasticity 17, 1167-1188 (2001) · Zbl 1097.74501 · doi:10.1016/S0749-6419(00)00073-5
[18] Khan, Akhtar S., Baig, M., 2010. Anisotropic responses, constitutive modeling and the effects of strain-rate and temperature on the formability of an aluminum alloy. International Journal of Plasticity, in press. · Zbl 1426.74011
[19] Khan, Akhtar S.; Pandey, Amit; Stoughton, Thomas: Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part II: A very high work hardening aluminum alloy (annealed 1100 al), International journal of plasticity 26, 1421-1431 (2010) · Zbl 1427.74002
[20] Khan, Akhtar S.; Pandey, Amit; Stoughton, Thomas: Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part III: Yield surface in tension – tension stress space (al 6061-t 6511 and annealed 1100 al), International journal of plasticity 26, 1432-1441 (2010) · Zbl 1427.74003
[21] Kirkby, E. L.; Michaud, V. J.; Månson, J. A. E.; Sottos, N. R.; White, S. R.: Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires, Polymer 50, 5533-5538 (2009)
[22] Lemaitre, J.; Chaboche, J. L.: Mechanics of solid materials, (1990) · Zbl 0743.73002
[23] Lemaitre, J.; Dufailly, J.: Damage measurements, Engineering fracture mechanics 28, 643-661 (1987)
[24] Li, G.; John, M.: A self-healing smart syntactic foam under multiple impacts, Composites science and technology 68, 3337-3343 (2008)
[25] Li, G.; Nettles, D.: Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam, Polymer 51, 755-762 (2010)
[26] Li, G.; Uppu, N.: Shape memory polymer based self-healing syntactic foam: 3-d confined thermomechanical characterization, Composites science and technology 70, 1419-1427 (2010)
[27] Liu, Y. L.; Chen, Y. W.: Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides, Macromolecular chemistry and physics 208, 224-232 (2007)
[28] Lubarda, V. A.; Krajcinovic, D.: Damage tensors and the crack density distribution, International journal of solids and structures 30, 2859-2877 (1993) · Zbl 0782.73058 · doi:10.1016/0020-7683(93)90158-4
[29] Lubliner, J.: On the thermodynamic foundations of non-linear solid mechanics, International journal of non-linear mechanics 7, 237-254 (1972) · Zbl 0265.73005 · doi:10.1016/0020-7462(72)90048-0
[30] Mangion, M. B. M.; Cavaillé, J. Y.; Perez, J.: A molecular theory for the sub-tg plastic mechanical response of amorphous polymers, Philosophical magazine A 66, 773-796 (1992)
[31] Miao, S.; Wang, M. L.; Schreyer, H. L.: Constitutive models for healing of materials with application to compaction of crushed rock salt, Journal of engineering mechanics 121, 1122-1129 (1995)
[32] Müller, Ch.; Bruhns, O. T.: A thermodynamic finite-strain model for pseudoelastic shape memory alloys, International journal of plasticity 22, 1658-1682 (2006) · Zbl 1099.74050 · doi:10.1016/j.ijplas.2006.02.010
[33] Nji, J.; Li, G.: A biomimetic shape memory polymer based self-healing particulate composite, Polymer 51, 6021-6029 (2010)
[34] Nji, J.; Li, G.: A self-healing 3d woven fabric reinforced shape memory polymer composite for impact mitigation, Smart materials and structuring 19, 1-9 (2010)
[35] Pang, J. W. C.; Bond, I. P.: A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility, Composites science and technology 65, 1791-1799 (2005)
[36] Plaisted, Thomas A.; Nemat-Nasser, Sia: Quantitative evaluation of fracture, healing and re-healing of a reversibly cross-linked polymer, Acta materialia 55, 5684-5696 (2007)
[37] Popov, P.; Lagoudas, D. C.: A 3-d constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite, International journal of plasticity 23, 1679-1720 (2007) · Zbl 1127.74008 · doi:10.1016/j.ijplas.2007.03.011
[38] Reese, S.; Christ, D.: Finite deformation pseudo-elasticity of shape memory alloys – constitutive modelling and finite element implementation, International journal of plasticity 24, 455-482 (2008) · Zbl 1145.74005 · doi:10.1016/j.ijplas.2007.05.005
[39] Shojaei, A.; Eslami, M.; Mahbadi, H.: Cyclic loading of beams based on the chaboche model, International journal of mechanics and materials in design 6, 217-228 (2010)
[40] Stumvoll, M.; Swoboda, G.: Deformation behavior of ductile solids containing anisotropic damage, Journal of engineering mechanics 119, 1331-1352 (1993)
[41] Thiagarajan, G.; Voyiadjis, G. Z.: Directionally constrained viscoplasticity for metal matrix composites, Journal of aerospace engineering 13, 92-99 (2000)
[42] Tobushi, H.; Hashimoto, T.; Hayashi, S.; Yamada, E.: Thermomechanical constitutive modeling in shape memory polymer of polyurethane series, Journal of intelligent material systems and structures 8, 711-718 (1997)
[43] Toohey, K. S.; Sottos, N. R.; Lewis, J. A.; Moore, J. S.; White, S. R.: Self-healing materials with microvascular networks, Nature materials 6, 581-585 (2007)
[44] Varley, R. J.; Van Der Zwaag, S.: Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration, Acta materialia 56, 5737-5750 (2008)
[45] Voyiadjis, G. Z.; Al-Rub, R. K. Abu: A finite strain plastic-damage model for high velocity impacts using combined viscosity and gradient localization limiters: part II – numerical aspects and simulations, International journal of damage mechanics 15, 335-373 (2006)
[46] Voyiadjis, G.Z. , Shojaei, A., Li, G., Kattan, P., 2011. Continuum damage-healing mechanics with introduction to new healing variables. International Journal of Damage Mechanics (revised).
[47] Voyiadjis, G. Z.; Al-Rub, R. K. Abu: Thermodynamic based model for the evolution equation of the backstress in cyclic plasticity, International journal of plasticity 19, 2121-2147 (2003) · Zbl 1145.74338 · doi:10.1016/S0749-6419(03)00062-7
[48] Voyiadjis, G. Z.; Al-Rub, R. K. Abu; Palazotto, A. N.: Thermodynamic framework for coupling of non-local viscoplasticity and non-local anisotropic viscodamage for dynamic localization problems using gradient theory, International journal of plasticity 20, 981-1038 (2004) · Zbl 1178.74029 · doi:10.1016/j.ijplas.2003.10.002
[49] Voyiadjis, G. Z.; Deliktas, B.: A coupled anisotropic damage model for the inelastic response of composite materials, Computer methods in applied mechanics and engineering 183, 159-199 (2000) · Zbl 0974.74010 · doi:10.1016/S0045-7825(99)00218-2
[50] Voyiadjis, G. Z.; Foroozesh, M.: Anisotropic distortional yield model, Journal of applied mechanics 57, 537-547 (1990)
[51] Voyiadjis, G. Z.; Kattan, P. I.: A comparative study of damage variables in continuum damage mechanics, International journal of damage mechanics 18, 315-340 (2009)
[52] Voyiadjis, G. Z.; Park, T.: Anisotropic damage of fiber – reinforced mmc using overall damage analysis, Journal of engineering mechanics 121, 1209-1217 (1995)
[53] Voyiadjis, G. Z.; Thiagarajan, G.: An anisotropic yield surface model for directionally reinforced metal-matrix composites, International journal of plasticity 11, 867-894 (1995) · Zbl 0862.73019 · doi:10.1016/S0749-6419(95)00035-6
[54] Voyiadjis, G. Z.; Thiagarajan, G.: Micro and macro anisotropic cyclic damage-plasticity models for mmcs, International journal of engineering science 35, 467-484 (1997) · Zbl 0912.73042 · doi:10.1016/S0020-7225(96)00125-5
[55] Voyiadjis, G. Z.; Venson, A. R.; Kattan, P. I.: Experimental determination of damage parameters in uniaxially-loaded metal-matrix composites using the overall approach, International journal of plasticity 11, 895-926 (1995)
[56] Voyiadjis, George Z.; Deliktas, Babur: Formulation of strain gradient plasticity with interface energy in a consistent thermodynamic framework, International journal of plasticity 25, 1997-2024 (2009) · Zbl 1272.74073
[57] Voyiadjis, George Z.; Pekmezi, Gerald; Deliktas, Babur: Nonlocal gradient-dependent modeling of plasticity with anisotropic hardening, International journal of plasticity 26, 1335-1356 (2010) · Zbl 1431.74033
[58] Voyiadjis, Z.; Kattan, P. I.: Advances in damage mechanics, (2006) · Zbl 0936.74004
[59] White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S.: Autonomic healing of polymer composites, Nature 409, 794-797 (2001)
[60] Xu, W.; Li, G.: Constitutive modeling of shape memory polymer based self-healing syntactic foam, International journal of solids and structures 47, 1306-1316 (2010) · Zbl 1194.74290 · doi:10.1016/j.ijsolstr.2010.03.018
[61] Yazdani, S.; Schreyer, H. L.: Combined plasticity and damage mechanics model for plain concrete, Journal of engineering mechanics 116, 1435-1450 (1990)
[62] Zaı&uml, F.; Ri; Naı&uml, M.; T-Abdelaziz; Gloaguen, J. M.; Lefebvre, J. M.: Modelling of the elasto-viscoplastic damage behaviour of glassy polymers, International journal of plasticity 24, 945-965 (2008) · Zbl 1135.74043
[63] Zako, M.; Takano, N.: Intelligent material systems using epoxy particles to repair microcracks and delamination damage in gfrp, Journal of intelligent material systems and structures 10, 836-841 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.