×

Lower semicontinuous with Lipschitz coefficients. (English) Zbl 1426.76091

MSC:

76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35Q35 PDEs in connection with fluid mechanics
PDFBibTeX XMLCite
Full Text: Euclid

References:

[1] E. Acerbi and N. Fusco, Semicontinuity Problems in the Calculus of Variations. Arch. Rat. Mech. Anal . 86 (1984), 125-145. · Zbl 0565.49010 · doi:10.1007/BF00275731
[2] R. A. Adams, Sobolev spaces . Academic Press 1975. · Zbl 0314.46030
[3] J. M. Ball, A version of the fundamental Theorem for Young measures, in PDE’s and Con-tinuum Models of Phase Transitions. M. Rascle, D. Serre, and M. Slemrod, eds., Lecture Notes in Phys . Springer 344 (1989), 207-215. · Zbl 0991.49500 · doi:10.1007/BFb0024945
[4] J. M. Ball, F. Murat, \(W^1,p\) -quasiconvexity and variational Problems for Multiple Integrals. J.Funct.Anal . 58 (1984), 222-253. · Zbl 0549.46019 · doi:10.1016/0022-1236(84)90041-7
[5] J.-M. Bony, Calcul Symbolique et Propagation de Singularités pour les Equations aux Dérivées Partielles non Linéaires. Ann.Sc.E.N.S., Paris . 14 (1981), 209-246. · Zbl 0495.35024
[6] G. Bourdaud, Une algèbre maximale d’opérateurs pseudodifferentiels. Comm. PDE . 13 (1988), 1059-1083. · Zbl 0659.35115 · doi:10.1080/03605308808820568
[7] A. Braides and A. Defranceschi, Homogenization of Multiple Integrals . Clarendon Press, Oxford 1998. · Zbl 0911.49010
[8] A. Braides, I. Fonseca and G. Leoni, \(\mathcalA-\) Quasiconvexity: Relaxation and Homogenization. ESAIM: Control, Optimization and Calculus of Variations Vol . 5 (2000), 539-577. · Zbl 0971.35010 · doi:10.1051/cocv:2000121
[9] J.-Y. Chemin, Fluides parfaits incompressibles . Astérisque 230 1995. · Zbl 0829.76003
[10] B. Dacorogna, Direct Methods in the Calculus of Variations . Springer-Verlag, Berlin 1989. · Zbl 0703.49001
[11] B. Dacorogna, Weak Continuity and Weak Lower Semicontinuity for Nonlinear Functionals . Springer-Verlag, Berlin, Lecture Notes in Math. 922 1982. · Zbl 0484.46041
[12] I. Fonseca and S. Müller, \(\mathcalA\)-quasiconvexity, Lower Semicontinuity and Young Measures. SIAM J.Math. Anal . 30 (1999), 1355-1390. · Zbl 0940.49014 · doi:10.1137/S0036141098339885
[13] L. Hörmander, Pseudo-differential operators of type 1.1. Comm. PDE . 13 (1988), 1087-1111. · Zbl 0667.35078 · doi:10.1080/03605308808820569
[14] Y. Meyer, Régularité des Solutions des Équations aux Dérivées Partielles Non Linéaires. Séminaire N. Bourbaki , 550 (1979), 293-302. · Zbl 0462.35012 · doi:10.1007/BFb0089941
[15] Y. Meyer, Remarques sur un Théoréme de J.M.Bony . Supplemento al Rendiconti der Circolo Matematico di Palermo, Serie II, 1 1981. · Zbl 0473.35021
[16] F. Murat, Compacité par compensation: condition necessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Sc. Norm. Sup. Pisa , (4)8 (1981), 68-102. · Zbl 0464.46034
[17] P. Pedregal, Parametrized measures and variational principles . Birkhäuser, 1997. · Zbl 0879.49017
[18] T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Neymtskij Operators and Non- linear Partial Differential Equations , Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter and Co., Berlin 3 1996. · Zbl 0873.35001
[19] P. Santos, \(\mathcalA-\) quasiconvexity with variable coefficients. Proceedings of the Royal. Soc. of Edinburgh , 134A (2004), 1219-1237. · Zbl 1061.49014 · doi:10.1017/S0308210500003711
[20] M.E. Taylor, Partial Differential Equations III, Non linear Equations , Appl. Math. Sc. Springer, 1996. · Zbl 0869.35003
[21] L. Tartar, Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics. Heriot-Watt Symposium, R. Knops, ed. vol. IV, Pitman Res. Notes Math . 39 (1979), 136-212. · Zbl 0437.35004
[22] L. Tartar, Some remarks on Separately Convex Functions in Microstructure and Phase Transition, edited by D. Kinderlehrer, R. D. James, M. Luskin and J. L. Ericksen. Springer-Verlag, IMA J. Math. Appl . 54 (1993), 191-204. · Zbl 0823.26008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.