zbMATH — the first resource for mathematics

A short note on the fast evaluation of dihedral angle potentials and their derivatives. (English) Zbl 1245.82002
Summary: Dihedral angle potentials, which are used in many force fields for molecular dynamics simulations, model the energy of twisting a bond as a function of the angle between surfaces spanned by particles.
82-08 Computational methods (statistical mechanics) (MSC2010)
Full Text: DOI
[1] Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P., A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations, Journal of computational chemistry, 24, 16, 1999-2012, (2003)
[2] Lifson, S.; Warshel, A., Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n?alkane molecules, Journal of chemical physics, 49, 11, 5116-5129, (1968)
[3] MacKerell, A.D.; Bashford, D.; Bellott; Dunbrack, R.L.; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.T.K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.T.; Prodhom, B.; Reiher, W.E.; Roux, B.; Schlenkrich, M.; Smith, J.C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M., All-atom empirical potential for molecular modeling and dynamics studies of proteins, The journal of physical chemistry B, 102, 18, 3586-3616, (1998)
[4] Mayo, S.L.; Olafson, B.D.; Goddard, W.A., DREIDING: a generic force field for molecular simulations, The journal of physical chemistry, 94, 26, 8897-8909, (1990)
[5] Oostenbrink, C.; Villa, A.; Mark, A.E.; Van Gunsteren, W.F., A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6, Journal of computational chemistry, 25, 13, 1656-1676, (2004)
[6] Allured, V.S.; Kelly, C.M.; Landis, C.R., SHAPES empirical force field: new treatment of angular potentials and its application to square-planar transition-metal complexes, Journal of the American chemical society, 113, 1, 1-12, (1991)
[7] Rappe, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skiff, W.M., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, Journal of the American chemical society, 114, 25, 10024-10035, (1992)
[8] K. Bowers, E. Chow, H. Xu, R. Dror, M. Eastwood, B. Gregersen, J. Klepeis, I. Kolossvary, M. Moraes, F. Sacerdoti, J. Salmon, Y. Shan, D. Shaw, Scalable algorithms for molecular dynamics simulations on commodity clusters, in: Proceedings of the ACM/IEEE SC 2006 Conference, 2006, p. 43. doi:10.1109/SC.2006.54.
[9] Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kal, L.; Schulten, K., Scalable molecular dynamics with NAMD, Journal of computational chemistry, 26, 16, 1781-1802, (2005)
[10] Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E., GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation, Journal of chemical theory and computation, 4, 3, 435-447, (2008)
[11] Clenshaw, C.W., A note on the summation of Chebyshev series, Mathematical tables and other aids to computation, 9, 51, 118-120, (1955) · Zbl 0065.05403
[12] Schlick, T., A recipe for evaluating and differentiating cos ϕ expressions, Journal of computational chemistry, 10, 7, 951-956, (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.