zbMATH — the first resource for mathematics

Parallel, grid-adaptive approaches for relativistic hydro- and magnetohydrodynamics. (English) Zbl 1426.76385
Summary: Relativistic hydro and magnetohydrodynamics provide continuum fluid descriptions for gas and plasma dynamics throughout the visible universe. We present an overview of state-of-the-art modeling in special relativistic regimes, targeting strong shock-dominated flows with speeds approaching the speed of light. Significant progress in its numerical modeling emerged in the last two decades, and we highlight specifically the need for grid-adaptive, shock-capturing treatments found in several contemporary codes in active use and development. Our discussion highlights one such code, MPI-AMRVAC (Message-Passing Interface-Adaptive Mesh Refinement Versatile Advection Code), but includes generic strategies for allowing massively parallel, block-tree adaptive simulations in any dimensionality. We provide implementation details reflecting the underlying data structures as used in MPI-AMRVAC. Parallelization strategies and scaling efficiencies are discussed for representative applications, along with guidelines for data formats suitable for parallel I/O. Refinement strategies available in MPI-AMRVAC are presented, which cover error estimators in use in many modern AMR frameworks. A test suite for relativistic hydro and magnetohydrodynamics is provided, chosen to cover all aspects encountered in high-resolution, shock-governed astrophysical applications. This test suite provides ample examples highlighting the advantages of AMR in relativistic flow problems.

76M12 Finite volume methods applied to problems in fluid mechanics
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
76W05 Magnetohydrodynamics and electrohydrodynamics
76L05 Shock waves and blast waves in fluid mechanics
Full Text: DOI
[1] Aloy, M.A.; Ibáñez, J.M.; Martí, J.M.; Müller, E., GENESIS: a high-resolution code for three-dimensional relativistic hydrodynamics, Apjs, 122, 151, (1999)
[2] Aloy, M.A.; Rezzolla, L., A powerful hydrodynamic booster for relativistic jets, Astrophys. J., 640, L115, (2006)
[3] Anderson, M.; Hirschmann, E.W.; Liebling, S.L.; Neilsen, D., Relativistic MHD with adaptive mesh refinement, Cqgra, 23, 6503, (2006) · Zbl 1133.83343
[4] Anninos, P.; Fragile, P.C.; Salmonson, J.D., Cosmos++: relativistic magnetohydrodynamics on unstructured grids with local adaptive refinement, Apj, 635, 723, (2005)
[5] Antón, L.; Miralles, J.A.; Martí, J.M.; Ibáñez, J.M.; Aloy, M.A.; Mimica, P., Relativistic magnetohydrodynamics: renormalized eigenvectors and full wave decomposition Riemann solver, Apjs, 188, 1, (2010)
[6] Balsara, D.S., Total variation diminishing scheme for relativistic magnetohydrodynamics, Astrophys. J. suppl. ser., 132, 83, (2001)
[7] Balsara, D.S.; Kim, J., A comparison between divergence-cleaning and staggered-mesh formulations for numerical magnetohydrodynamics, Astrophys. J., 602, 1079, (2004)
[8] Berger, M.J., Data structures for adaptive grid generation, SIAM J. sci. stat. comput., 7, 904, (1986) · Zbl 0625.65116
[9] Berger, M.J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. comput. phys., 82, 64, (1989) · Zbl 0665.76070
[10] J. Bergmans, R. Keppens, D.E.A. van Odyck, A. Achterberg, Simulations of relativistic astrophysical flows, in: T. Plewa, T. Linde, V.G. Weirs (Eds.), Adaptive Mesh Refinement - Theory and Applications, Lecture Notes in Computational Science and Engineering, vol. 41, 2005, p. 223. · Zbl 1065.85502
[11] Cactus toolkit at <http://cactuscode.org>.
[12] Cada, M.; Torrilhon, M., Compact third-order limiter functions for finite volume methods, J. comput. phys., 228, 4118, (2009) · Zbl 1273.76286
[13] Calder, A.C.; Fryxell, B.; Plewa, T.; Rosner, R.; Dursi, L.J.; Weirs, V.G.; Dupont, T.; Robey, H.F.; Kane, J.O.; Remington, B.A.; Drake, R.P.; Dimonte, G.; Zingale, M.; Timmes, F.X.; Olson, K.; Ricker, P.; MacNeice, P.; Tufo, H.M., On validating an astrophysical simulation code, Astrophys. J. suppl. ser., 143, 201, (2002)
[14] Chombo library at <http://seesar.lbl.gov/ANAG/chombo/>.
[15] Colella, P.; Woodward, P.R., The piecewise parabolic method (PPM) for gas dynamical simulations, J. comput. phys., 54, 174, (1984) · Zbl 0531.76082
[16] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. comput. phys., 175, 645, (2002) · Zbl 1059.76040
[17] Dellar, P.J., A note on magnetic monopoles and the one-dimensional MHD Riemann problems, J. comput. phys., 172, 392, (2001) · Zbl 1065.35523
[18] Delmont, P.; Keppens, R.; van der Holst, B., An exact Riemann-solver-based solution for regular shock refraction, J. fluid mech., 627, 33, (2009) · Zbl 1171.76409
[19] Del Zanna, L.; Bucciantini, N., An efficient shock-capturing central-type scheme for multidimensional relativistic flows. I. hydrodynamics, Astron. astrophys., 390, 1177, (2002) · Zbl 1209.76022
[20] Del Zanna, L.; Bucciantini, N.; Londrillo, P., An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. magnetohydrodynamics, Astron. astrophys., 400, 397, (2003) · Zbl 1222.76122
[21] Del Zanna, L.; Zanotti, O.; Bucciantini, N.; Londrillo, P., ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics, Astron. astrophys., 473, 11, (2007)
[22] Dubal, M.R., Numerical simulations of special relativistic, magnetic gas flows, Comput. phys. commun., 64, 221, (1991)
[23] Evans, C.R.; Hawley, J.F., Simulation of magnetohydrodynamic flows – a constrained transport method, Astrophys. J., 332, 659, (1988)
[24] FLASH3 user guide at <http://flash.uchicago.edu>.
[25] Font, J.A.; Ibáñez, J.M.; Marquina, A.; Martí, J.M., Multidimensional relativistic hydrodynamics: characteristic fields and modern high-resolution shock-capturing schemes, Astron. astrophys., 282, 304, (1994)
[26] Font, J.A., Numerical hydrodynamics and magnetohydrodynamics in general relativity, Living rev. relat., 11, 7, (2008) · Zbl 1166.83003
[27] Gammie, C.F.; McKinney, J.C.; Tóth, G., HARM: a numerical scheme for general relativistic magnetohydrodynamics, Astrophys. J., 589, 444, (2003)
[28] Gardiner, T.A.; Stone, J., An unsplit Godunov method for ideal MHD via constrained transport in three dimensions, J. comput. phys., 227, 4123, (2008) · Zbl 1317.76057
[29] Giacomazzo, B.; Rezzolla, L., The exact solution of the Riemann problem in relativistic MHD, J. fluid mech., 562, 223, (2006) · Zbl 1097.76073
[30] Giacomazzo, B.; Rezzolla, L., Whiskymhd: a new numerical code for general relativistic magnetohydrodynamics, Cqgra, 24, S235, (2007) · Zbl 1117.83002
[31] Goedbloed, J.P.; Keppens, R.; Poedts, S., Advanced MHD. with application to laboratory and astrophysical plasmas, (2010), Cambridge University Press Cambridge
[32] Harten, A.; Lax, P.D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM rev., 25, 35, (1983) · Zbl 0565.65051
[33] Honkkila, V.; Janhunen, P., HLLC solver for ideal relativistic MHD, J. comput. phys., 223, 643, (2007) · Zbl 1111.76036
[34] Hughes, P.A.; Miller, M.A.; Duncan, G.C., Three-dimensional hydrodynamic simulations of relativistic extragalactic jets, Astrophys. J., 572, 713, (2002)
[35] is a product of <http://www.ittvis.com>.
[36] Janhunen, P., A positive conservative method for magnetohydrodynamics based on HLL and roe methods’, J. comput. phys., 160, 649, (2000) · Zbl 0967.76061
[37] Keppens, R.; Meliani, Z., Linear wave propagation in relativistic magnetohydrodynamics, Phys. plasmas, 15, 102103, (2008)
[38] Keppens, R.; Meliani, Z., Grid-adaptive simulations of relativistic flows, () · Zbl 1197.76085
[39] Keppens, R.; Meliani, Z.; van der Holst, B.; Casse, F., Extragalactic jets with helical magnetic fields: relativistic MHD simulations, Astron. astrophys., 486, 663, (2008)
[40] Keppens, R.; Nool, M.; Tóth, G.; Goedbloed, J.P., Adaptive mesh refinement for conservative systems: multi-dimensional efficiency evaluation, Comput. phys. commun., 153, 317, (2003) · Zbl 1196.76055
[41] Keppens, R.; Tóth, G., Openmp parallelism for multi-dimensional grid-adaptive magnetohydrodynamic simulations, Lect. notes comput. sci., 2329, 940, (2002) · Zbl 1053.76526
[42] Koldoba, A.V.; Kuznetsov, O.A.; Ustyugova, G.V., An approximate Riemann solver for relativistic magnetohydrodynamics, Mnras, 333, 932, (2002)
[43] Komissarov, S.S., A Godunov-type scheme for relativistic magnetohydrodynamics, Mnras, 303, 343, (1999)
[44] Komissarov, S.S., Multi-dimensional numerical scheme for resistive relativistic MHD, Mnras, 382, 995, (2007)
[45] Koren, B., A robust upwind discretization method for advection, diffusion and source terms, (), 117 · Zbl 0805.76051
[46] Kurganov, A.; Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convection – diffusion equations, J. comput. phys., 160, 241, (2000) · Zbl 0987.65085
[47] Leismann, T.; Antón, L.; Aloy, M.A.; Müller, E.; Martí, J.M.; Miralles, J.A.; Ibáñez, J.M., Relativistic MHD simulations of extragalactic jets, Astron. astrophys., 436, 503, (2005)
[48] Löhner, R., An adaptive finite element scheme for transient problems in CFD, Comput. methods appl. mech. eng., 61, 323, (1987) · Zbl 0611.73079
[49] MacNeice, P.; Olson, K.M.; Mobarry, C.; deFainchtein, R.; Packer, C., PARAMESH: a parallel adaptive mesh refinement community toolkit, Comput. phys. commun., 126, 330, (2000) · Zbl 0953.65088
[50] Mathews, W.G., The hydromagnetic free expansion of a relativistic gas, Astrophys. J., 165, 147, (1971)
[51] Marder, B., A method for incorporating gauss’ law into electromagnetic PIC codes, J. comput. phys., 68, 48, (1987) · Zbl 0603.65079
[52] Martí, J.M.; Müller, E.; Font, J.A.; Ibáñez, J.M.; Marquina, A., Morphology and dynamics of relativistic jets, Astrophys. J., 479, 151, (1997)
[53] Martí, J.M.; Müller, E., Numerical hydrodynamics in special relativity, Living rev. relat., 6, 7, (2003) · Zbl 1068.83502
[54] Meliani, Z.; Sauty, C.; Tsinganos, K.; Vlahakis, N., Relativistic parker winds with variable effective polytropic index, Astron. astrophys., 425, 773, (2004)
[55] Meliani, Z.; Keppens, R.; Casse, F.; Giannios, D., AMRVAC and relativistic hydrodynamic simulations for gamma-ray burst afterglow phases, Mnras, 376, 1189, (2007)
[56] Meliani, Z.; Keppens, R.; Giacomazzo, B., Fanaroff-riley type I jet deceleration at density discontinuities, Astron. astrophys., 491, 321, (2008)
[57] Meliani, Z.; Keppens, R., Decelerating relativistic two-component jets, Astrophys. J., 705, 1594, (2009)
[58] Meliani, Z.; Keppens, R., Dynamics and stability of relativistic GRB blast waves, Astron. astrophys., 520, L3, (2010)
[59] Mignone, A.; Plewa, T.; Bodo, G., The piecewise parabolic method for multidimensional relativistic fluid dynamics, Astrophys. J. suppl. ser., 160, 199, (2005)
[60] Mignone, A.; Bodo, G., An HLLC Riemann solver for relativistic flows - I. hydrodynamics, Mnras, 364, 126, (2005)
[61] Mignone, A.; Bodo, G., An HLLC Riemann solver for relativistic flows - II. magnetohydrodynamics, Mnras, 368, 1040, (2006)
[62] Mignone, A.; Bodo, G.; Massaglia, S.; Matsakos, T.; Tesileanu, O.; Zanni, C.; Ferrari, A., PLUTO: a numerical code for computational astrophysics, Astrophys. J. suppl. ser., 170, 228, (2007)
[63] Mignone, A.; McKinney, J.C., Equation of state in relativistic magnetohydrodynamics: variable versus constant adiabatic index, Mnras, 378, 1118, (2007)
[64] Mignone, A.; Rossi, P.; Bodo, G.; Ferrari, A.; Massaglia, S., High resolution 3D relativistic MHD simulations of jets, Mnras, 402, 7, (2010)
[65] Mignone, A.; Tzeferacos, P., A second-order unsplit Godunov scheme for cell-centered MHD: the CTU-GLM scheme, J. comput. phys., 229, 2117, (2010) · Zbl 1303.76142
[66] Mignone, A.; Ugliano, M.; Bodo, G., A five-wave harten – lax – van leer Riemann solver for relativistic magnetohydrodynamics, Mnras, 393, 1141, (2009)
[67] Miller, G.H.; Colella, P., A conservative three-dimensional Eulerian method for coupled solid – fluid shock capturing, J. comput. phys., 183, 26, (2002) · Zbl 1057.76558
[68] Mizuno, Y.; Hardee, P.; Nishikawa, K.I., Three-dimensional relativistic magnetohydrodynamic simulations of magnetized spine-sheath relativistic jets, Astrophys. J., 662, 835, (2007)
[69] Noble, S.C.; Gammie, C.F.; McKinney, J.C.; del Zanna, L., Primitive variable solvers for conservative general relativistic magnetohydrodynamics, Astrophys. J., 641, 626, (2006)
[70] OpenDX is an open source tool available at <http://www.opendx.org>.
[71] Paraview is an open source tool available at <http://www.paraview.org>.
[72] Perucho, M.; Martí, J.M., A numerical simulation of the evolution and fate of a fanaroff-riley type I jet, Mnras, 382, 526, (2007)
[73] Pons, J.A.; Martí, J.M.; Müller, E., The exact solution of the Riemann problem with non-zero tangential velocities in relativistic hydrodynamics, J. fluid mech., 422, 125, (2000) · Zbl 0994.76104
[74] K.G. Powell, An Approximate Riemann Solver for Magnetohydrodynamics (That Works in More than One Dimension), ICASE Report No. 94-24, Langley VA, 1994.
[75] Rossi, P.; Mignone, A.; Bodo, G.; Massaglia, S.; Ferrari, A., Formation of dynamical structures in relativistic jets: the FRI case, Astron. astrophys., 488, 795, (2008)
[76] Rusanov, V.V., The calculation of the interaction of non-stationary shock waves and obstacles, USSR comput. math. math. phys., 1, 304, (1961)
[77] Ryu, D.; Chattopadhyay, I.; Choi, E., Equation of state in numerical relativistic hydrodynamics, Astrophys. J. suppl. ser., 166, 410, (2006)
[78] Sokolov, I.V.; Zhang, H.-M.; Sakai, J.I., Simple and efficient Godunov scheme for computational relativistic gas dynamics, J. comput. phys., 172, 209, (2001) · Zbl 1065.76585
[79] is a product of , see <http://www.tecplot.com>.
[80] Synge, J.L., The relativistic gas, (1957), North Holland Amsterdam · Zbl 0077.41706
[81] Toro, E.F., Riemann solvers and numerical methods for fluid dynamics, (1997), Springer-Verlag Berlin · Zbl 0888.76001
[82] Tóth, G., The LASY preprocessor and its application to general multi-dimensional codes, J. comput. phys., 138, 981, (1997) · Zbl 0903.76077
[83] Tóth, G., A general code for modeling MHD flows on parallel computers: versatile advection code, Astrophys. lett. commun., 34, 245, (1996), See <http://www.phys.uu.nl/∼toth>
[84] Tóth, G.; Odstrčil, D., Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems, J. comput. phys., 128, 82, (1996) · Zbl 0860.76061
[85] Tóth, G., The ∇·B=0 constraint in shock-capturing magnetohydrodynamics codes, J. comput. phys., 161, 605, (2000) · Zbl 0980.76051
[86] van der Holst, B.; Keppens, R., Hybrid block-AMR in Cartesian and curvilinear coordinates: MHD applications, J. comput. phys., 226, 925, (2007) · Zbl 1310.76133
[87] van der Holst, B.; Keppens, R.; Meliani, Z., A multidimensional grid-adaptive relativistic magnetofluid code, Comput. phys. commun., 179, 617, (2008) · Zbl 1197.76085
[88] A.J. van Marle, R. Keppens, Radiative cooling in numerical astrophysics: the need for adaptive mesh refinement, Comput. Fluids, in press, doi:10.1016/j.compfluid.2010.10.022. · Zbl 1271.76202
[89] van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to godunov’s method, J. comput. phys., 32, 101, (1979) · Zbl 1364.65223
[90] Visit is available at <https://wci.llnl.gov/codes/visit/home.html>.
[91] Wang, P.; Abel, T.; Zhang, W., Relativistic hydrodynamic flows using spatial and temporal adaptive structured mesh refinement, Astrophys. J. suppl. ser., 176, 467, (2008)
[92] T. Wen, J. Su, P. Colella, K. Yelick, N. Koen, An adaptive mesh refinement benchmark for modern parallel programming languages, in: SC’07 Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, doi:10.1145/1362622.1362676.
[93] H.C. Yee, A class of high-resolution explicit and implicit shock-capturing methods, NASA TM-101088, 1989.
[94] Zenitani, S.; Hesse, M.; Klimas, A., Scaling of the anomalous boost in relativistic jet boundary layer, Astrophys. J., 712, 951, (2010)
[95] Zhang, W.; MacFadyen, A.I., RAM: a relativistic adaptive mesh refinement hydrodynamics code, Astrophys. J. suppl. ser., 164, 255, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.