×

Particle simulations of space weather. (English) Zbl 1238.86008

Summary: We review the application of particle simulation techniques to the full kinetic study of space weather events. We focus especially on the methods designed to overcome the difficulties created by the tremendous range of time and space scales present in the physical systems. We review the aspects of the derivation of the particle in cell (PIC) method relevant to the discussion. We consider first the explicit formulation highlighting its severe limitations due to the presence of stability constraints. Next we introduce implicit methods designed to remove such constraints. We describe both fully implicit methods based on the use of non-linear iteration solvers and semi-implicit methods based on the linearization of the coupling and on simpler linear solvers. We focus the discussion on the implicit moment method but remark its differences from the direct implicit method. The application of adaptive methods within PIC is discussed. Finally practical considerations about the implementation of the implicit PIC method on massively parallel computers to conduct studies of space weather events are given.

MSC:

86A99 Geophysics
76M28 Particle methods and lattice-gas methods

Software:

PETSc; Parsek2D; iPIC3D
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] http://www.ofcm.gov/nswp-sp/text/a-cover.htm.
[2] Bothmer, V.; Daglis, I.A., Space weather – physics and effects, (2007), Praxis Publishing
[3] M. Kallenrode, Space physics: an introduction to plasmas and particles in the heliosphere and magnetospheres, 2004.
[4] Lipatov, A.S.S., The hybrid multiscale simulation technology, (2002), Springer Berlin
[5] Aschwanden, M.J., Physics of the solar corona, an introduction with problems and solutions, (2005), Praxis Publishing Ltd Chichester, UK
[6] Cost 724 final report. <http://www.costes0803.noa.gr/documents/cost-docs>.
[7] Community coordinated modeling center (CCMC). <http://www.ccmc.gsfc.nasa.gov/>.
[8] Solar terrestrial investigations and archives (SOTERIA). <http://www.soteria-space.eu>.
[9] T. Falkenberg et al., The catalogue of selected events, Soteria Report D4.1, 2008, pp. 1-115. <http://www.soteria-space.eu/doc/reports/SOTERIA_D4_1.pdf>.
[10] Xie, H.; Ofman, L.; Lawrence, G., Cone model for halo CMEs: application to space weather forecasting, Journal of geophysical research (space physics), 109, 3109, (2004)
[11] Tóth, G.; Sokolov, I.V.; Gombosi, T.I.; Chesney, D.R.; Clauer, C.R.; De Zeeuw, D.L.; Hansen, K.C.; Kane, K.J.; Manchester, W.B.; Oehmke, R.C.; Powell, K.G.; Ridley, A.J.; Roussev, I.I.; Stout, Q.F.; Volberg, O.; Wolf, R.A.; Sazykin, S.; Chan, A.; Yu, B.; Kóta, J., Space weather modeling framework: A new tool for the space science community, Journal of geophysical research (space physics), 110, 12226, (2005)
[12] Markidis, S.; Lapenta, G.; Rzwan-udding, Multi-scale simulations of plasma with ipic3d, Mathematics and computers in simulation, 80, 7, 1509-1519, (2010) · Zbl 1195.82086
[13] Biskamp, D., Magnetic reconnection, (2000), Cambridge University Press · Zbl 0595.76049
[14] Priest, E.; Forbes, T., Magnetic reconnection: MHD theory and applications, (1999), Cambridge University Press
[15] Lapenta, G.; Markidis, S.; Divin, A.; Goldman, M.; Newman, D., Scales of guide field reconnection at the hydrogen mass ratio, Physics of plasmas, 17, 8, 082106, (2010)
[16] Drake, J.F.; Swisdak, M.; Cattell, C.; Shay, M.A.; Rogers, B.N.; Zeiler, A., Inherently three dimensional magnetic reconnection: a mechanism for bursty bulk flows?, Science, 299, 873, (2003)
[17] Cattell, C.; Dombeck, J.; Wygant, J.; Drake, J.F.; Swisdak, M.; Goldstein, M.L.; Keith, W.; Fazakerley, A.; André, M.; Lucek, E.; Balogh, A., Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations, Journal of geophysical research (space physics), 110, A9, 1211, (2005)
[18] Goldman, M.V.; Newman, D.L.; Pritchett, P., Vlasov simulations of electron holes driven by particle distributions from PIC reconnection simulations with a guide field, Grl, 35, 22109, (2008)
[19] Sitnov, M.I.; Swisdak, M.; Divin, A.V., Dipolarization fronts as a signature of transient reconnection in the magnetotail, Journal of geophysical research (space physics), 114, A13, 4202, (2009)
[20] Hockney, R.; Eastwood, J., Computer simulation using particles, (1988), Taylor & Francis · Zbl 0662.76002
[21] Birdsall, C.; Langdon, A., Plasma physics via computer simulation, (2004), Taylor & Francis London
[22] Coppa, G.G.M.; Lapenta, G.; Dellapiana, G.; Donato, F.; Riccardo, V., Blob method for kinetic plasma simulation with variable-size particles, Journal of computational physics, 127, 2, 268-284, (1996) · Zbl 0861.76061
[23] Bateson, W.B.; Hewett, D.W., Grid and particle hydrodynamics: beyond hydrodynamics via fluid element particle-in-cell, Journal of computational physics, 144, 2, 358-378, (1998) · Zbl 0936.76066
[24] sJacobs, G.B.; Hesthaven, J.S., High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids, Journal of computational physics, 214, 96-121, (2006) · Zbl 1137.76461
[25] Morton, K.; Mayers, D., Iterative methods for linear and nonlinear equations, (1995), SIAM Philadelphia
[26] Y.N. Grigoryev, V.A. Vshivkov, M.P. Fedoruk, Numerical particle-in-cell methods: theory and applications, VSP BV, AH Zeist, 2005.
[27] Sulsky, D.; Brackbill, J.U., A numerical method for suspension flow, Journal of computational physics, 96, 339, (1991) · Zbl 0727.76082
[28] Taflove, A.; Hagness, S.C., Computational electrodynamics: the finite-difference time-domain method, (2005), Artech House Publishers Norwood
[29] Vu, H.X.; Brackbill, J.U., Celest1d: an implicit, fully-kinetic model for low-frequency, electromagnetic plasma simulation, Computer physics communications, 69, 253, (1992)
[30] Fujimoto, K.; Sydora, R.D., Electromagnetic particle-in-cell simulations on magnetic reconnection with adaptive mesh refinement, Computer physics communications, 178, 915-923, (2008)
[31] Mohammadian, A.H.; Shankar, V.; Hall, W.F., Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure, Computer physics communications, 68, 175-196, (1991)
[32] Assous, F.; Degond, P.; Heintze, E.; Raviart, P.A.; Segre, J., On a finite-element method for solving the three-dimensional Maxwell equations, Journal of computational physics, 109, 222-237, (1993) · Zbl 0795.65087
[33] Morse, R.L.; Nielson, C.W., Numerical simulation of the Weibel instability in one and two dimensions, Physics of fluids, 14, 830-840, (1971)
[34] Ricci, P.; Lapenta, G.; Brackbill, J., A simplified implicit Maxwell solver, Journal of computational physics, 183, 117-141, (2002) · Zbl 1036.78012
[35] Tóth, G., The \(\nabla \cdot B = 0\) constraint in shock-capturing magnetohydrodynamics codes, Journal of computational physics, 161, 2, 605-652, (2000) · Zbl 0980.76051
[36] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, Journal of computational physics, 175, 645-673, (2002) · Zbl 1059.76040
[37] Bowers, K.J.; Albright, B.J.; Yin, L.; Daughton, W.; Roytershteyn, V.; Bergen, B.; Kwan, T.J.T., Advances in petascale kinetic plasma simulation with VPIC and roadrunner, Journal of physics conference series, 180, 1, 012055, (2009)
[38] Langdon, A.B., On enforcing gauss’ law in electromagnetic particle-in-cell codes, Computer physics communications, 70, 447-450, (1992)
[39] Munz, C.; Omnes, P.; Schneider, R.; Sonnendrücker, E.; Voß, U., Divergence correction techniques for Maxwell solvers based on a hyperbolic model, Journal of computational physics, 161, 484-511, (2000) · Zbl 0970.78010
[40] Mason, R., Implicit moment particle simulation of plasmas, Journal of computational physics, 41, 233, (1981) · Zbl 0469.76121
[41] Denavit, J., Time-filtering particle stimulations with \(\omega \_ \mathit{pe} \operatorname{\Delta} t \gg 1\), Journal of computational physics, 42, 337, (1981)
[42] Brackbill, J.; Forslund, D., Simulation of low frequency, electromagnetic phenomena in plasmas, Journal of computational physics, 46, 271, (1982) · Zbl 0489.76127
[43] Langdon, A.; Cohen, B.; Friedman, A., Direct implicit large time-step particle simulation of plasmas, Journal of computational physics, 51, 107-138, (1983) · Zbl 0572.76123
[44] Vu, H.; Brackbill, J., Accurate numerical solution of charged particle motion in a magnetic field, Journal of computational physics, 116, 384, (1995) · Zbl 0824.65130
[45] Cohen, B.I.; Langdon, A.B.; Hewett, D.W.; Procassini, R.J., Performance and optimization of direct implicit particle simulation, Journal of computational physics, 81, 151, (1989)
[46] Friedman, A., A second-order implicit particle mover with adjustable damping, Journal of computational physics, 90, 292, (1990) · Zbl 0701.76121
[47] S. Markidis, G. Lapenta, Coupling global and kinetic scales with the implicit particle-in-cell methods, in: Presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 December.
[48] G. Lapenta, S. Markidis, Particle acceleration and energy conservation in particle in cell simulations. Physical Review Letters, submitted for publication. · Zbl 1231.82067
[49] S. Markidis, G. Lapenta, The energy conserving particle-in-cell method, Journal of Computational Physics, submitted for publication. · Zbl 1231.82067
[50] (), 271
[51] Kim, H.; Chacòn, L.; Lapenta, G., Fully implicit particle-in-cell algorithm, Bulletin of the American physical society, 50, 2913, (2005)
[52] S. Markidis, Development of Implicit Kinetic Simulation Methods, and Their Application to Ion Beam Propagation in Current and Future Neutralized Drift Compression Experiments, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 2010.
[53] Kelley, C.T., Iterative methods for linear and nonlinear equations, (1995), SIAM Philadelphia · Zbl 0832.65046
[54] Saad, Y., Iteractive methods for sparse linear systems, (2003), SIAM Philadelphia
[55] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Web page, 2009. <http://www.mcs.anl.gov/petsc>.
[56] S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.0.0, Argonne National Laboratory, 2008.
[57] Balay, S.; Gropp, W.D.; McInnes, L.C.; Smith, B.F., Efficient management of parallelism in object oriented numerical software libraries, (), 163-202 · Zbl 0882.65154
[58] Lapenta, G.; Brackbill, J.U.; Ricci, P., Kinetic approach to microscopic – macroscopic coupling in space and laboratory plasmas, Physics of plasmas, 13, 055904, (2006)
[59] Noguchi, K.; Tronci, C.; Zuccaro, G.; Lapenta, G., Formulation of the relativistic moment implicit particle-in-cell method, Physics of plasmas, 14, 4, 042308, (2007)
[60] Drouin, M.; Gremillet, L.; Adam, J.-C.; Héron, A., Particle-in-cell modeling of relativistic laser-plasma interaction with the adjustable-damping, direct implicit method, Journal of computational physics, 229, 12, 4781-4812, (2010) · Zbl 1305.76082
[61] Brackbill, J.U., An adaptive grid with directional control, Journal of computational physics, 108, 38, (1993) · Zbl 0832.65132
[62] J. Brackbill, An adaptive grid with directional control for toroidal plasma simulation, in: Proceedings of the 14th International Conference on the Numerical Simulation of Plasmas, American Physical Society, Annapolis MD, 1991.
[63] G. Lapenta, Adaptive Multi-Dimensional Particle In Cell. <arXiv:0806.0830>. · Zbl 1416.76245
[64] Berger, M.J.; Oliger, J., The AMR technique, Journal of computational physics, 53, 484-512, (1984)
[65] Vay, J.; Colella, P.; Friedman, A.; Grote, D.P.; McCorquodale, P.; Serafini, D.B., Implementations of mesh refinement schemes for particle-in-cell plasma simulations, Computer physics communications, 164, 297-305, (2004)
[66] Vay, J.; Colella, P.; McCorquodale, P.; van Straalen, B.; Friedman, A.; Grote, D.P., Mesh refinement for particle-in-cell plasma simulations: applications to and benefits for heavy ion fusion, Laser and particle beams, 20, 569-575, (2002)
[67] Colella, P.; Norgaard, P.C., Controlling self-force errors at refinement boundaries for AMR-PIC, Journal of computational physics, 229, 947-957, (2010) · Zbl 1185.82054
[68] Hewett, D.W.; Langdon, A.B., Electromagnetic direct implicit plasma simulation, Journal of computational physics, 72, 121-155, (1987) · Zbl 0636.76126
[69] Welch, D.R.; Rose, D.V.; Oliver, B.V.; Clark, R.E., Simulation techniques for heavy ion fusion chamber transport, Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment, 464, 1-3, 134-139, (2001)
[70] http://www.code.google.com/p/celeste/.
[71] S. Markidis, E. Camporeale, D. Burgess, Rizwan-Uddin, G. Lapenta, Parsek2D: an implicit parallel particle-in-cell code, in: N.V. Pogorelov, E. Audit, P. Colella, G.P. Zank (Eds.), Astronomical Society of the Pacific Conference Series, Astronomical Society of the Pacific Conference Series, vol. 406, 2009, p. 237.
[72] Lapenta, G.; Brackbill, J., Contact discontinuities in collisionless plasmas: a comparison of hybrid and kinetic simulations, Geophysical research letters, 23, 1713, (1996)
[73] Lapenta, G.; Brackbill, J.U., A kinetic theory for the drift-kink instability, Journal of geophysical research (space physics), 102, 27099-27108, (1997)
[74] Lapenta, G.; Brackbill, J., 3d reconnection due to oblique modes: a simulation of harris current sheets, Nonlinear processes geophysics, 7, 151, (2000)
[75] Lapenta, G.; Brackbill, J., Nonlinear evolution of the lower hybrid drift instability: current sheet thinning and kinking, Physics of plasmas, 9, 5, 1544-1554, (2002)
[76] Lapenta, G.; Brackbill, J.U.; Daughton, W.S., The unexpected role of the lower hybrid drift instability in magnetic reconnection in three dimensions, Physics of plasmas, 10, 1577-1587, (2003)
[77] Ricci, P.; Lapenta, G.; Brackbill, J., Gem challenge: implicit kinetic simulations with the physical mass ratio, Geophysical research letters, 29, (2002)
[78] Ricci, P.; Brackbill, J.; Daughton, W.; Lapenta, G., Collisionless magnetic reconnection in the presence of a guide field, Physics of plasmas, 11, 8, 4102-4114, (2004)
[79] Ricci, P.; Lapenta, G.; Brackbill, J., Structure of the magnetotail current: kinetic simulation and comparison with satellite observations, Geophysical research letters, 31, L06801, (2004)
[80] Ricci, P.; Brackbill, J.U.; Daughton, W.; Lapenta, G., Influence of the lower hybrid drift instability on the onset of magnetic reconnection, Physics of plasmas, 11, 4489-4500, (2004)
[81] Lapenta, G., A new paradigm for 3D collisionless magnetic reconnection, Space science reviews, 107, 167-174, (2003)
[82] Ricci, P.; Lapenta, G.; Brackbill, J., Electron acceleration and heating in collisioneless magnetic reconnection, Physics of plasmas, 10, 9, 3554-3560, (2003)
[83] Birn, J.; Galsgaard, K.; Hesse, M.; Hoshino, M.; Huba, J.; Lapenta, G.; Pritchett, P.L.; Schindler, K.; Yin, L.; Buchner, J.; Neukirch, T.; Priest, E.R., Forced magnetic reconnection, Geophysical research letters, 32, L06105, (2005)
[84] Camporeale, E.; Lapenta, G., Model of bifurcated current sheets in the earth’s magnetotail: equilibrium and stability, Journal of geophysical research (space physics), 110, A9, 7206, (2005)
[85] Innocenti, M.E.; Lapenta, G., Momentum creation by drift instabilities in space and laboratory plasmas, Plasma physics and controlled fusion, 49, 521, (2007)
[86] Lapenta, G.; Krauss-Varban, D.; Karimabadi, H.; Huba, J.D.; Rudakov, L.I.; Ricci, P., Kinetic simulations of x-line expansion in 3D reconnection, Geophysical research letters, 33, 10102, (2006)
[87] Lapenta, G.; King, J., Study of current intensification by compression in the Earth magnetotail, Journal of geophysical research (space physics), 112, A11, 12204, (2007)
[88] Wan, W.; Lapenta, G., Micro – macro coupling in plasma self-organization processes during island coalescence, Physical review letters, 100, 3, 035004, (2008)
[89] Wan, W.; Lapenta, G., Electron self-reinforcing process of magnetic reconnection, Physical review letters, 101, 1, 015001, (2008)
[90] Wan, W.; Lapenta, G., Evolutions of non-steady-state magnetic reconnection, Physics of plasmas, 15, 10, 102302, (2008)
[91] Wan, W.; Lapenta, G.; Delzanno, G.L.; Egedal, J., Electron acceleration during guide field magnetic reconnection, Physics of plasmas, 15, 3, 032903, (2008)
[92] Lapenta, G., Large-scale momentum exchange by microinstabilities: a process happening in laboratory and space plasmas, Physica scripta, 80, 3, 035507, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.