×

zbMATH — the first resource for mathematics

The Brunt-Väisälä frequency of rotating tokamak plasmas. (English) Zbl 1380.76166
Summary: The continuous spectrum of toroidally rotating magnetically confined plasma equilibria is investigated analytically and numerically. In the presence of purely toroidal flow, the ideal magnetohydrodynamic equations leave the freedom to specify which thermodynamic quantity is constant on the magnetic surfaces. Introducing a general parametrization of this quantity, analytical equilibrium solutions are derived that still posses this freedom. These equilibria and their spectral properties are shown to be ideally suited for testing numerical equilibrium and stability codes including toroidal rotation. Analytical expressions are derived for the low-frequency continuous Alfvén spectrum. These expressions still allow one to choose which quantity is constant on the magnetic surfaces of the equilibrium, thereby generalizing previous results. The centrifugal convective effect is shown to modify the lowest Alfvén continuum branch to a buoyancy frequency, or Brunt-Väisälä frequency. A comparison with numerical results for the case that the specific entropy, the temperature, or the density is constant on the magnetic surfaces yields excellent agreement, showing the usefulness of the derived expressions for the validation of numerical codes.

MSC:
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76U05 General theory of rotating fluids
Software:
PHOENIX; CASTOR; FINESSE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Grad, H. Rubin, Proceedings of the Second United Nations Conference on the Peaceful Uses of Atomic Energy, vol. 21, 1958, pp. 190-197.
[2] Shafranov, V.D., On magnetohydrodynamic equilibrium configurations, Soviet phys. JETP, 33, 710-722, (1957) · Zbl 0081.21801
[3] Solov’ev, L.S., The theory of hydromagnetic stability of toroidal plasma configurations, Soviet phys. JETP, 26, 400-407, (1968)
[4] Hill, M.J.M., On a spherical vortex, Phyl. trans. roy. soc. London A, 185, 213-245, (1894) · JFM 25.1471.01
[5] Maschke, E.K., Exact solutions of the MHD equilibrium equation for a toroidal plasma, Plasma phys., 15, 535-541, (1973)
[6] F. Herrnegger, On the equilibrium and stability of the belt pinch, in: Proceedings 5th European Conference on Controlled Fusion Plasma Physics, 1972, p. 26.
[7] Guazzotto, L.; Freidberg, J.P., A family of analytic equilibrium solutions for the grad – shafranov equation, Phys. plasmas, 14, 112508, (2007)
[8] Sudano, J.P., Equilibrium of a toroidal plasma, Phys. fluids, 17, 1915-1916, (1974)
[9] Lai, C.S.; Verleun, M., An exact solution for toroidal plasma in equilibrium, Phys. fluids, 19, 1066-1067, (1976)
[10] Mc Carthy, P.J., Analytical solutions to the grad – shafranov equation for tokamak equilibrium with dissimilar source functions, J. plasma fusion res., 6, 937-948, (1999)
[11] Wang, S.; Yu, J., An exact solution of the grad – shafranov – helmhotz equation with central current density reversal, Phys. plasmas, 12, 062501, (2005)
[12] Scheffel, J., Linear MHD equilibria in toroidal geometry-exact and approximate solutions, Phys. scr., 30, 350-365, (1984)
[13] Atanasiu, C.V.; Günter, S.; Lackner, K.; Miron, I.G., Analytical solutions to the grad – shafranov equation, Phys. plasmas, 11, 3510-3518, (2004)
[14] Tsui, K.H., Toroidal equilibria in spherical coordinates, Phys. plasmas, 15, 112506, (2008)
[15] Khater, A.H.; Moawad, S.M., Exact solutions for axisymmetric nonlinear magnetohydrodynamic equilibria of aligned magnetic field and plasma flow with applications to astrophysics and plasma confinement devices, Phys. plasmas, 16, 052504, (2009)
[16] Zheng, S.B.; Wootton, A.J.; Solano, E.R., Analytical tokamak equilibrium for shaped plasmas, Phys. plasmas, 3, 1176-1178, (1996)
[17] Cerfon, A.J.; Freidberg, J.P., One size fits all analytic solutions to the grad – shafranov equation, Phys. plasmas, 17, 032502, (2010)
[18] Maschke, E.K.; Perrin, H., Exact analytic solution of the stationary M.H.D. equilibrium equation of a toroidal plasma in rotation, Plasma phys., 22, 579-594, (1980)
[19] Throumoulopoulos, G.N.; Pantis, G.N., Analytic axisymmetric magnetohydrodynamic equilibria of a plasma torus with toroidal mass flow, Phys. fluids B, 1, 1827-1833, (1989)
[20] Clemente, R.A.; Farengo, R., A class of rotating compact tori equilibria, Phys. fluids, 27, 776-778, (1984) · Zbl 0541.76178
[21] O. Missiato, J.P. Sudano, Exact analytic solution of the stationary M.H.D. equilibrium equation of a toroidal plasma in rotation, in: Conference: Latin-American workshop on plasma physics and controlled nuclear fusion research, Cambuquira, Brazil, 8 February 1982, Rev. Bras. Fis. J. 1 (1982) 264-275.
[22] Viana, R.L.; Clemente, R.A.; Lopes, S.R., Spherically symmetric stationary MHD equilibria with azimuthal rotation, Plasma phys. control fusion, 39, 415-434, (1997)
[23] Throumoulopoulos, G.N.; Poulipoulis, G.; Pantis, G.; Tasso, H., Exact magnetohydrodynamic equilibria with flow and effects on the Shafranov shift, Phys. lett. A, 317, 463-469, (2003) · Zbl 1059.76080
[24] Tasso, H.; Throumoulopoulos, G.N., Axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows, Phys. plasmas, 5, 2378-2383, (1998)
[25] Goedbloed, J.P., Some remarks on computing axisymmetric equilibria, Comput. phys. commun., 31, 123-135, (1984)
[26] Semenzato, S.; Gruber, R.; Zehrfeld, H.P., Computation of symmetric ideal MHD flow equilibria, Comput. phys. rep., 1, 389-425, (1984)
[27] Lütjens, H.; Bondeson, A.; Roy, A., Axisymmetric MHD equilibrium solver with bicubic Hermite elements, Comput. phys. commun., 69, 287-298, (1992)
[28] Kerner, W.; Goedbloed, J.P.; Huysmans, G.T.A.; Poedts, S.; Schwarz, E., CASTOR: normal-mode analysis of resistive MHD plasmas, J. comput. phys., 142, 271-303, (1998) · Zbl 0921.76100
[29] Keppens, R.; Blokland, J.W.S., Computing ideal magnetohydrodynamic equilibria, Trans. fusion sci. technol., 49, 131-138, (2006)
[30] Kerner, W.; Jandl, O., Axisymmetric MHD equilibria with flow, Comput. phys. commun., 31, 269-285, (1984)
[31] Lao, L.L., Variational moment method for computing magnetohydrodynamic equilibria, Comput. phys. commun., 31, 201-212, (1984)
[32] Kerner, W.; Tokuda, S., Computation of tokamak equilibria with steady flow, Zeitschr. naturforsch. A, 42, 1154-1166, (1987)
[33] Cooper, W.A.; Hirshman, S.P., Axisymmetric MHD equilibria with isothermal toroidal mass flow by variational steepest descent method, Plasma phys. controlled fusion, 29, 933-943, (1987)
[34] Varadarajan, V.; Choe, W.H.; Miley, G.H., Rapid calculation of tokamak equilibria with toroidal rotation via minimization of a functional, Appl. math. comput., 43, 145-163, (1991) · Zbl 0721.76098
[35] Masaru, F.; Yuji, N.; Satoshi, H.; Masahiro, W., Tokamak equilibria with toroidal flows, J. plasma fusion res., 76, 937-948, (2000)
[36] Qilong, R.; Cheng, Z., Numerical study of tokamak equilibrium with toroidal flow on EAST, Plasma sci. technol., 8, 511-515, (2006)
[37] Elsasser, K.; Heimsoth, A., Axisymmetric plasma equilibria with incompressible flow, Zeitschr. naturforsch. A, 41, 883-896, (1986)
[38] Varadarajan, V.D.; Miley, G.H., Linear instability analysis for toroidal plasma flow equilibria, J. comput. phys., 123, 415-434, (1996) · Zbl 0849.76070
[39] Beliën, A.J.C.; Botchev, M.A.; Goedbloed, J.P.; van der Holst, B.; Keppens, R., FINESSE: axisymmetric MHD equilibria with flow, J. comput. phys., 11, 91-117, (2002) · Zbl 1021.76026
[40] Blokland, J.W.S.; Keppens, R.; Goedbloed, J.P., Unstable magnetohydrodynamical continuous spectrum of accretion disks, Astronomy astrophys., 467, 21-35, (2007) · Zbl 1142.85302
[41] Berger, D.; Bernard, L.C.; Gruber, R.; Troyon, F., Numerical study of the unstable MHD spectrum of a small aspect ratio, flat current, non-circular tokamak, J. appl. math. phys., 31, 113-132, (1980) · Zbl 0426.76046
[42] Grimm, R.C.; Dewar, R.L.; Manickam, J., Ideal MHD stability calculations in axisymmetric toroidal coordinate systems, J. comput. phys., 49, 94-117, (1983) · Zbl 0505.76139
[43] Schellhase, A.R.; Storer, R.G., Spectral analysis of resistive MHD in toroidal geometry, J. comput. phys., 123, 15-31, (1996) · Zbl 0839.76058
[44] van der Holst, B.; Beliën, A.J.C.; Goedbloed, J.P., Low frequency Alfvén waves induced by toroidal flows, Phys. plasmas, 7, 4208-4222, (2000)
[45] Wang, S., Zonal flows in tokamak plasmas with toroidal rotation, Phys. rev. lett., 97, 085002, (2006)
[46] Wang, S., Erratum: zonal flows in tokamak plasmas with tororidal rotation, Phys. rev. lett., 97, 129902, (2006)
[47] Wahlberg, C., Low-frequency magnetohydrodynamics and geodesic acoustic modes in toroidally rotating tokamak plasmas, Plasma phys. control fusion, 51, 085006, (2009)
[48] Lakhin, V.P.; Ilgisonis, V.I.; Smolyakov, A.I., Geodesic acoustic modes and zonal flows in toroidally rotating tokamak plasmas, Phys. lett. A, 374, 4872-4875, (2010) · Zbl 1238.76066
[49] Hameiri, E., The equilibrium and stability of rotating plasmas, Phys. fluids, 26, 230-237, (1983) · Zbl 0537.76121
[50] Zehrfeld, H.P.; Green, B.J., Stationary toroidal equilibria at finite beta, Nucl. fusion, 12, 569-575, (1972)
[51] Avinash, K.; Bhattacharyya, S.N.; Green, B.J., Axisymmetric toroidal equilibrium with incompressible flows, Plasma phys. controlled fusion, 11, 465-473, (1992)
[52] C. Yarim, U. Daybelge, A. Nicolai, Modelling of Rotating Plasma States and their Stability Accounting for Neutral Beam Injection and Helical Perturbations, Technical Report, Juelich Research Center, 2003.
[53] Velikhov, E.P., Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field, Sov. phys. JETP, 36, 1398-1404, (1959)
[54] Chandrasekhar, S., The stability of non-dissipative Couette flow in hydromagnetics, Proc. nat. acad. sci., 46, 253-257, (1960) · Zbl 0094.40401
[55] Balbus, S.A.; Hawley, J.F., A powerful local shear instability in weakly magnetized disks. I: linear analysis, Astrophys. J., 376, 214-222, (1991)
[56] Furukawa, M.; Yoshida, Z.; Hirota, M.; Krishan, V., MHD stability in flowing plasmas: connection between fusion plasma and astrophysics research, Plasma fusion res., 2, 016, (2007)
[57] Bernstein, I.B.; Frieman, E.A.; Kruskal, M.D.; Kulsrud, R.M., An energy principle for hydromagnetic stability problems, Proc. roy. soc. London, 244, 17-40, (1958) · Zbl 0081.21704
[58] Frieman, E.; Rotenberg, M., On hydromagnetic stability of stationary equilibria, Rev. mod. phys., 32, 898-902, (1960) · Zbl 0101.20202
[59] Waelbroeck, F.L., Gyroscopic stabilization of the internal kink mode, Phys. plasmas, 3, 1047-1053, (1996)
[60] Goedbloed, J.P., New construction of the magnetohydrodynamic spectrum of stationary plasma flows. I: solution path and alternator, Phys. plasmas, 16, 122110, (2009)
[61] Goedbloed, J.P.; Poedts, S., Principles of magnetohydrodynamics, (2004), Cambridge University Press
[62] Blokland, J.W.S.; van der Swaluw, E.; Keppens, R.; Goedbloed, J.P., Magneto-rotational overstability in accretion disks, Astronomy astrophys., 444, 337-346, (2005) · Zbl 1104.85006
[63] Sen, A.K., Stabilization of interchange type instabilities in tokamaks via inverted flow profiles, Nucl. fusion, 34, 459-463, (1994)
[64] Haverkort, J.W.; de Blank, H.J., Local stability of rotating tokamak plasmas, Plasma phys. control. fusion, 53, 045008, (2011)
[65] Wahlberg, C., Geodesic acoustic mode induced by toroidal rotation in tokamaks, Phys. rev. lett., 101, 115003, (2008)
[66] Holst, B.v.d.; Beliën, A.J.C.; Goedbloed, J.P., New Alfvén continuum gaps and global modes induced by toroidal flow, Phys. rev. lett., 84, 2865-2868, (2000)
[67] Chu, M.S., A numerical study of the high-n shear Alfvén spectrum gap and the high-n gap mode, Phys. fluids B, 4, 3713-3721, (1992)
[68] Turnbull, A.D., Global Alfvén modes: theory and experiment, Phys. fluids B, 5, 2546-2553, (1993)
[69] Winsor, N.; Johnson, J.L.; Dawson, J.M., Geodesic acoustic waves in hydromagnetic systems, Phys. fluids, 11, 2448-2450, (1968)
[70] Haverkort, J.W.; de Blank, H.J.; Koren, B., Low-frequency Alfvén gap modes in rotating tokamak plasmas, Plasma phys. control fusion, 53, 045004, (2011)
[71] Guazzotto, L.; Betti, R.; Manickam, J.; Kaye, S., Numerical study of tokamak equilibria with arbitrary flow, Phys. plasmas, 11, 604-614, (2004)
[72] Blokland, J.W.S.; van der Holst, B.; Keppens, R.; Goedbloed, J.P., PHOENIX: MHD spectral code for rotating laboratory and gravitating astrophysical plasmas, J. comput. phys., 206, 509-533, (2007) · Zbl 1310.76189
[73] Sleijpen, G.L.G.; van der Vorst, H.A., A jacobi – davidson iteration method for linear eigenvalue problems, SIAM J. matrix anal. appl., 17, 401-425, (1996) · Zbl 0860.65023
[74] Poedts, S.; Schwarz, E., Computation of the ideal-MHD continuous spectrum in axisymmetric plasmas, J. comput. phys., 105, 165-168, (1993) · Zbl 0800.76029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.