Douai, Jean Claude Cohomologie des schémas en groupes sur les courbes définies sur les corps quasi-finis et loi de réciprocité. (Cohomology of group schemes over curves defined over quasi-finite fields and reciprocity law). (French) Zbl 0604.14034 J. Algebra 103, 273-284 (1986). The author generalizes some known results of G. Harder on cohomology of semi-simple split algebraic groups [Invent. Math. 4, 165- 191 (1967; Zbl 0158.395)] to a larger class of global base fields. Reviewer: I.Dolgachev Cited in 2 Documents MSC: 14L10 Group varieties 20G10 Cohomology theory for linear algebraic groups Keywords:cohomology of semi-simple split algebraic groups Citations:Zbl 0158.395 PDF BibTeX XML Cite \textit{J. C. Douai}, J. Algebra 103, 273--284 (1986; Zbl 0604.14034) Full Text: DOI OpenURL References: [1] Douai, J.C., () [2] Douai, J.C., C. R. acad. sci. Paris, se´r. A, 280, 321, (1975) [3] Douai, J.C., C. R. acad. sci. Paris, 281, 1077, (1975) [4] Douai, J.C., C. R. acad. sci. Paris, 285, 325, (1977) [5] Douai, J.C., C. R. acad. sci. Paris, 290, 407, (1980) [6] Douai, J.C., J. algebra, 79, 68-77, (1982), n ° 1 [7] Douai, J.C., Actes du vlie‘me congre‘s des mathe´maticiens de langue latines, (), 235-238 [8] Douai, J.C.; Touibi, C., Acta arith., 42, 101-106, (1982), et l’errata correspondant [9] Giraud, J., Cohomologie non abe´lienne, () · Zbl 0135.02301 [10] Harder, G., Math. Z., 92, 396-415, (1966) [11] Harder, G., Invent. math., 4, 165-191, (1967) [12] Lang, S.; Tate, J., Amer. J. math., 80, 659-684, (1958) [13] Ogg, A.P., Ann. of math., 76, No. 2, 185-212, (1962) [14] Rim, D.S.; Whaples, G., Nagoya math. J., 27, 323-329, (1966) [15] de Geometrie^Alge´brique, Se´minaire, (), 1963-1964 (note´S.G.A.D) [16] Tate, J., Invent. math., 23, 179-206, (1974) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.