zbMATH — the first resource for mathematics

Quelques propriétés des espaces homogènes sphériques. (Some properties of spherical homogeneous spaces). (French) Zbl 0604.14048
Let G be a connected reductive algebraic group over an algebraically closed field of characteristic zero, and let H be a closed subgroup of G. The homogeneous space G/H is called ”spherical”, iff the action of a Borel subgroup of G has a dense orbit in G/H. For example, if H contains a maximal unipotent subgroup of G, or if G/H is a symmetric space, then G/H is spherical.
The author proves that any spherical homogeneous space G/H is a deformation of a homogeneous space \(G/H_ 0\), where \(H_ 0\) contains a maximal unipotent subgroup of G. This implies that the action of a Borel subgroup of G on a spherical homogeneous space G/H has only a finite number of orbits.
Reviewer: F.Pauer

14M17 Homogeneous spaces and generalizations
20G15 Linear algebraic groups over arbitrary fields
14L30 Group actions on varieties or schemes (quotients)
Full Text: DOI EuDML
[1] BOREL, A.: Linear Algebraic Groups. New York: Benjamin 1969 · Zbl 0206.49801
[2] BORHO, W. et KRAFT, H.: Über Bahnen und ihren Deformationen bei linearen Aktionen reduktiver Gruppen. Comment. Math. Helv. 54, 61-104 (1979) · Zbl 0395.14013 · doi:10.1007/BF02566256
[3] BORBBAKI, N.: Groupes et algebres de Lie, chapitres 4,5 et 6. Paris: Hermann 1968
[4] KRAFT, H.: Geometrische Methoden in der Invarianten-theorie. Braunschweig/Wiesbaden. Vieweg 1985
[5] KRÄMER, M.: Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen. Compositio Mathematica 38, 129-153 (1979) · Zbl 0402.22006
[6] LUNA, D. et VUST, Th.: Plongements d’espaces homogenes. Comment. Math. Helv. 58, 186-245 (1983) · Zbl 0545.14010 · doi:10.1007/BF02564633
[7] PAUER, F.: Normale Einbettungen von G/U. Math. Ann. 257, 371-396 (1981) · Zbl 0461.14013 · doi:10.1007/BF01456507
[8] VINBERG, E.B. et KIMEL’FEL’D, B. N.: Homogeneous domains on flag manifolds and spherical subgroups. Funct. Anal. 12, 168-174 (1978) · Zbl 0439.53055 · doi:10.1007/BF01681428
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.