zbMATH — the first resource for mathematics

The Takagi function and its generalization. (English) Zbl 0604.26004
Let \(\psi\) be the ”tent” map \(\psi (x)=1-| 2x-1|\) for \(x\in [0,1]\), and let \(E_ T\) be the Takagi’s class consisting of functions of the form \(\sum^{\infty}_{n=1}a_ n\psi^ n(x)\), where \(\sum a_ n\) is absolutely convergent and \(\psi^ n\) denotes the n-th iterate of \(\psi\). It is known that \(E_ T\) contains both singular and regular functions (i.e. \(a_ n=2^{-n}\) gives a nowhere differentiable map, while \(a_ n=4^{-n}\) gives the map \(g(x)=x(1-x)).\)
This interesting paper contains a characterization of \(E_ T\) using Schauder’s bases. The main part of the paper is devoted to the problem of existence of \(f\in E_ T\) with Schauder’s coefficients satisfying certain functional equations.
Reviewer: J.Smítal

26A30 Singular functions, Cantor functions, functions with other special properties
26A18 Iteration of real functions in one variable
26A27 Nondifferentiability (nondifferentiable functions, points of nondifferentiability), discontinuous derivatives
39B12 Iteration theory, iterative and composite equations
Full Text: DOI
[1] T. Takagi, A simple example of the continuous function without derivative. The Collected Papers of Teiji Takagi, Iwanami Shoten Pub., 1973, 5–6.
[2] M. Yamaguti and M. Hata, Weierstrass’s function and chaos. Hokkaido Math. J.,12 (1983), 333–342. · Zbl 0522.26006
[3] E. Cesàro, Fonction continues sans dérivée. Arch. Math. Phys.,10 (1906), 57–63.
[4] G. Faber, Einfaches Beispiel einer stetigen nirgends differentiierbaren Funktion. Jahresber. Deutsch. Math.-Verein,16 (1907), 538–540. · JFM 38.0417.02
[5] G. Landsberg, Über Differentiierbarkeit stetiger Funktionen. Jahresber. Deutsch. Math.-Verein.,17 (1908), 46–51. · JFM 39.0454.01
[6] B. L. van der Waerden, Ein einfaches Beispieleiner nicht-differenzierbaren stetigen Funktion. Math. Z.,32 (1930), 474–475. · JFM 56.0929.02
[7] G. de Rham, Sur un exemple de fonction continue sans dérivée. Enseign. Math.,3 (1957), 71–72. · Zbl 0077.06104
[8] G. Julia, Series de fractions rationnelles d’itération. C. R. Acad. Sci. Paris,180-I (1925), 563–566 · JFM 51.0263.04
[9] –, Fonctions continues sans dérivées formées avec les itérées d’une fraction rationnelle. Ann. Sci. École Norm. Sup.,48 (1931), 1–14. · Zbl 0001.27002
[10] J. Moser, On a theorem of Anosov. J. Differential Equations,5 (1969), 411–440. · Zbl 0169.42303
[11] J. L. Kaplan, J. Mallet-Paret and J. A. Yorke, The Lyapunov Dimension of a Nowhere Differentiable Attracting Torus. to appear. · Zbl 0558.58018
[12] J-P. Kahane, Sur Texemple, donné par M. de Rham, d’une fonction continue sans dérivée. Enseign. Math.,5 (1959), 53–57.
[13] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis. Vol. 1, Graylock. Rochester, 1957. · Zbl 0235.46001
[14] A. Zygmund. Trigonometric Series. Cambridge, 1968.
[15] G. Faber, Über stetige Funktionen, Math. Ann.,69 (1910), 372–443. · JFM 41.0448.02
[16] G. Freud, Über trigonometrische Approximation und Fouriersche Reihen. Math. Z.,78 (1962), 252–262. · Zbl 0101.04802
[17] N. Kôno, private communications.
[18] B. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman, San Francisco, 1982. · Zbl 0504.28001
[19] A. S. Besicovitch and H. D. Ursell, Sets of fractional dimensions (IV): On dimensional numbers of some continuous curves. J. London Math. Soc.,12 (1937), 18–25. · Zbl 0016.01703
[20] G. de Rham, Sur quelques courbes definites par des equations fonctionnelles. Rend. Sem. Mat. Torino,16 (1957), 101–113.
[21] Z. Lomnicki and S. Ulam, Sur la théorie de la mesure dans les espaces combinatoires et son application au calcul des probabilités I. Variables indépendantes. Fund. Math.,23 (1934), 237–278. · Zbl 0009.40601
[22] R. Salem, On some singular monotonic functions which are strictly increasing. Trans. Amer. Math. Soc.,53 (1943), 427–439. · Zbl 0060.13709
[23] H. Takayasu, Physical models of fractal functions. Japan J. Appl. Math.,1 (1984), 201–205. · Zbl 0604.26005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.