×

Automates boustrophédon, semi-groupe de Birget et monoïde inversif libre. (French) Zbl 0604.68094

the power of two-way automata is shown to be unaltered by various recognition rules. Some properties of the rational sets in the Birget’s semigroup and the free inverse monoid are deduced.

MSC:

68Q45 Formal languages and automata
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] 1. AHO, HOPCROFT et HULLMAN, Time and Tape Complexity of Pushdown Automaton Languages, Information and Control, vol. 13, n^\circ 3, 1968, p. 186-206. Zbl0257.68065 · Zbl 0257.68065
[2] 2. BERSTEL, Transductions and Context-Free Languages, Teubner, 1979. Zbl0424.68040 MR549481 · Zbl 0424.68040
[3] 3. BIRGET, Ph. D, Un. of California, Berkeley, 1983.
[4] 4. EILENBERG, Automata, Languages and Machines, Vol. A, Acad. Press, 1974. Zbl0317.94045 · Zbl 0317.94045
[5] 3. MUNN, Free Inverse Semigroup, Proc. London Math. Soc., (3), vol. 29, 1974, p. 385-404. Zbl0305.20033 MR360881 · Zbl 0305.20033
[6] 6. SCHEIBLICH, Free Inverse semigroups, Proc. Amer. Math. Soc., vol. 38, 1973, p. 1-7. Zbl0256.20079 MR310093 · Zbl 0256.20079
[7] 7. SHEPHERDSON, The Reduction of Two-Way Automata to One-Way Automata, I.B.M. J. Res., vol. 3, n^\circ 2, 1959, p. 198-200. Zbl0158.25601 MR103796 · Zbl 0158.25601
[8] 8. PÉCUCHET, Automates Boustrophédon et mots infin, T.C.S. (à paraître). Zbl0571.68074 · Zbl 0571.68074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.