zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Basin attractors for various methods. (English) Zbl 06043881
Summary: There are many methods for the solution of a nonlinear algebraic equation. The methods are classified by the order, informational efficiency and efficiency index. Here we consider other criteria, namely the basin of attraction of the method and its dependence on the order. We discuss several methods of various orders and present the basin of attraction for several examples. It can be seen that not all higher order methods were created equal. Newton’s, Halley’s, Murakami’s and Neta -- Johnson’s methods are consistently better than the others. In two of the examples Neta’s 16th order scheme was also as good.

65H05Single nonlinear equations (numerical methods)
Full Text: DOI
[1] S. Amat, S. Busquier, S. Plaza, Iterative root-finding methods, unpublished report, 2004. · Zbl 1137.37316
[2] C. Chun, B. Neta, A New Sixth-Order Scheme for Nonlinear Equations, Appl. Math. Lett. accepted for publication. · Zbl 1260.65048
[3] Conte, S. D.; De Boor, C.: Elementary numerical analysis: an algorithmic approach, (1973) · Zbl 0496.65001
[4] Halley, E.: A new, exact and easy method of finding the roots of equations generally and that without any previous reduction, Phil. trans. Roy. soc. London 18, 136-148 (1694)
[5] Popovski, D. B.: A family of one point iteration formulae for finding roots, Int. J. Comput. math. 8, 85-88 (1980) · Zbl 0423.65028 · doi:10.1080/00207168008803193
[6] Laguerre, E. N.: Sur une méthode pour obtener par approximation LES racines d’une équation algébrique qui a toutes ses racines réelles, Nouvelles ann. De math. 2e séries 19, 88-103 (1880) · Zbl 12.0071.02
[7] King, R. F.: A family of fourth order methods for nonlinear equations, SIAM J. Numer. amal. 10, 876-879 (1973) · Zbl 0266.65040 · doi:10.1137/0710072
[8] Kung, H. T.; Traub, J. F.: Optimal order of one-point and multipoint iterations, J. assoc. Comput. Mach 21, 643-651 (1974) · Zbl 0289.65023 · doi:10.1145/321850.321860
[9] Milnor, J.: Dynamics in one complex variable, Annals of mathematics studies, number 160 (2006) · Zbl 1085.30002
[10] Murakami, T.: Some fifth order multipoint iterative formulae for solving equations, J. inform. Process. 1, 138-139 (1978) · Zbl 0394.65015
[11] Neta, B.: A sixth order family of methods for nonlinear equations, Int. J. Comput. math. 7, 157-161 (1979) · Zbl 0397.65032 · doi:10.1080/00207167908803166
[12] Neta, B.; Johnson, A. N.: High order nonlinear solver, J. comput. Methods sci. Eng. 8, No. 4 -- 6, 245-250 (2008) · Zbl 1168.65345
[13] Jarratt, P.: Multipoint iterative methods for solving certain equations, Comput. J. 8, 398-400 (1966) · Zbl 0141.13404
[14] Neta, B.; Petković, M. S.: Construction of optimal order nonlinear solvers using inverse interpolation, Appl. math. Comput. 217, 2448-2455 (2010) · Zbl 1202.65062 · doi:10.1016/j.amc.2010.07.045
[15] Neta, B.: On a family of multipoint methods for nonlinear equations, Int. J. Comput. math. 9, 353-361 (1981) · Zbl 0466.65027 · doi:10.1080/00207168108803257
[16] Ostrowski, A. M.: Solution of equations and systems of equations, (1973) · Zbl 0304.65002
[17] B.D. Stewart, Attractor Basins of Various Root-Finding Methods, M.S. thesis, Naval Postgraduate School, Department of Applied Mathematics, Monterey, CA, June 2001.