zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical analysis of singularly perturbed delay differential turning point problem. (English) Zbl 1319.65056
Summary: We describe a numerical method based on fitted operator finite difference scheme for the boundary value problems for singularly perturbed delay differential equations with turning point and mixed shifts. Similar boundary value problems are encountered while simulating several real life processes for instance, first exit time problem in the modelling of neuronal variability. A rigorous analysis is carried out to obtain priori estimates on the solution and its derivatives for the considered problem. In the development of numerical methods for constructing an approximation to the solution of the problem, a special type of mesh is generated to tackle the delay term along with the turning point. Then, to develop robust numerical scheme and deal with the singularity because of the small parameter multiplying the highest order derivative term, an exponential fitting parameter is used. Several numerical examples are presented to support the theory developed in the paper.

MSC:
65L03Functional-differential equations (numerical methods)
34K10Boundary value problems for functional-differential equations
34K26Singular perturbations of functional-differential equations
34K28Numerical approximation of solutions of functional-differential equations
65L10Boundary value problems for ODE (numerical methods)
65L11Singularly perturbed problems for ODE (numerical methods)
65L70Error bounds (numerical methods for ODE)
65L12Finite difference methods for ODE (numerical methods)
WorldCat.org
Full Text: DOI
References:
[1] Amiraliyeva, I. G.; Erdogan, F.: Uniform numerical method for singularly perturbed delay differential equations, Comput. math. Appl. 53, 1251-1259 (2007) · Zbl 1134.65042 · doi:10.1016/j.camwa.2006.07.009
[2] Amiraliyeva, I. G.; Amiraliyev, G. M.: Uniform difference method for parameterized singularly perturbed delay differential equations, Numer. algor. 52, 509-521 (2009) · Zbl 1206.65192 · doi:10.1007/s11075-009-9295-y
[3] Amiraliyeva, I. G.; Erdogan, F.; Amiraliyev, G. M.: A uniform numerical method for dealing with a singularly perturbed delay initial value problem, Appl. math. Lett. 23, 1221-1225 (2010) · Zbl 1207.65091 · doi:10.1016/j.aml.2010.06.002
[4] Allen, D. N.; Southwell, R. V.: Relaxation methods applied to determine the motion, in 2D, of a viscous fluid past a fixed cylinder, Quart. J. Mech. appl. Math. 8, No. 2, 129-145 (1955) · Zbl 0064.19802 · doi:10.1093/qjmam/8.2.129
[5] Il’in, A. M.: A difference scheme for a differential equation with a small parameter affecting the highest derivative (in russian), Mat. zametki. 6, 237-248 (1969)
[6] Berger, A. E.; Han, H.; Kellog, R. B.: A priori estimates and analysis of a numerical method for a turning point problem, Math. comput. 42, No. 166, 465-492 (1984) · Zbl 0542.34050 · doi:10.2307/2007596
[7] Doolan, E. P.; Miller, J. J. H.; Schilders, W. H. A.: Uniform numerical methods for problems with initial and boundary layers, (1980) · Zbl 0459.65058
[8] Farrell, P. A.: Sufficient conditions for the uniform convergence of a difference scheme for a singularly perturbed turning point problem, SIAM J. Numer. anal. 25, No. 3, 618-643 (1988) · Zbl 0646.65068 · doi:10.1137/0725038
[9] Kadalbajoo, M. K.; Sharma, K. K.: Numerical analysis of boundary-value problems for singularly-perturbed differential-difference equations with small shifts of mixed type, J. optim. Theory appl. 115, No. 1, 145-163 (2002) · Zbl 1023.65079 · doi:10.1023/A:1019681130824
[10] Kadalbajoo, M. K.; Sharma, K. K.: Numerical analysis of boundary value problem for singularly perturbed delay differential equations with layer behavior, Appl. math. Comput. 151, No. 1, 11-28 (2004) · Zbl 1069.65086 · doi:10.1016/j.amc.2003.06.012
[11] Kadalbajoo, M. K.; Sharma, K. K.: Numerical treatment of a mathematical model arising from a model of neuronal variability, J. math. Anal. appl. 307, 606-627 (2005) · Zbl 1062.92012 · doi:10.1016/j.jmaa.2005.02.014
[12] Kadalbajoo, M. K.; Sharma, K. K.: An exponentially fitted finite difference scheme for solving boundary-value problems for singularly-perturbed differential-difference equations: small shifts of mixed type with layer behavior, J. comput. Anal. appl. 8, No. 2, 151-171 (2006) · Zbl 1099.65062
[13] Kadalbajoo, M. K.; Sharma, K. K.: A numerical method based on finite difference for boundary value problems for singularly perturbed delay differential equations, Appl. math. Comput. 197, 692-707 (2008) · Zbl 1141.65062 · doi:10.1016/j.amc.2007.08.089
[14] Lange, C. G.; Miura, R. M.: Singular perturbation analysis of boundary value problems of differential-difference equations, SIAM J. Appl. math. 42, 502-531 (1982) · Zbl 0515.34058 · doi:10.1137/0142036
[15] Lange, C. G.; Miura, R. M.: Singular perturbation analysis of boundary value problems for differential-difference equations. III. turning point problems, SIAM J. Appl. math. 45, 708-734 (1985) · Zbl 0623.34051 · doi:10.1137/0145042
[16] Lange, C. G.; Miura, R. M.: Singular perturbation analysis of boundary value problems for differential-difference equations. V. small shifts with layer behavior, SIAM J. Appl. math. 54, 249-272 (1994) · Zbl 0796.34049 · doi:10.1137/S0036139992228120
[17] Lange, C. G.; Miura, R. M.: Singular perturbation analysis of boundary value problems for differential-difference equations. VI. small shifts with rapid oscillations, SIAM J. Appl. math. 54, 273-283 (1994) · Zbl 0796.34050 · doi:10.1137/S0036139992228119
[18] Stein, R. B.: A theoretical analysis of neuronal variability, Biophys. J. 5, 173-194 (1965)
[19] Stein, R. B.: Some models of neuronal variability, Biophys. J. 7, 37-68 (1967)